On the ring of the variety of algebras over a ring
Commentationes Mathematicae Universitatis Carolinae, Tome 24 (1983) no. 2, pp. 325-334 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 08B10, 13C05, 13C99, 13F20, 16A06, 16D90, 16S10
@article{CMUC_1983_24_2_a11,
     author = {Zlato\v{s}, Pavol},
     title = {On the ring of the variety of algebras over a ring},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {325--334},
     year = {1983},
     volume = {24},
     number = {2},
     mrnumber = {711269},
     zbl = {0515.08007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1983_24_2_a11/}
}
TY  - JOUR
AU  - Zlatoš, Pavol
TI  - On the ring of the variety of algebras over a ring
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1983
SP  - 325
EP  - 334
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1983_24_2_a11/
LA  - en
ID  - CMUC_1983_24_2_a11
ER  - 
%0 Journal Article
%A Zlatoš, Pavol
%T On the ring of the variety of algebras over a ring
%J Commentationes Mathematicae Universitatis Carolinae
%D 1983
%P 325-334
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1983_24_2_a11/
%G en
%F CMUC_1983_24_2_a11
Zlatoš, Pavol. On the ring of the variety of algebras over a ring. Commentationes Mathematicae Universitatis Carolinae, Tome 24 (1983) no. 2, pp. 325-334. http://geodesic.mathdoc.fr/item/CMUC_1983_24_2_a11/

[1] C. FAITH: Algebra: Rings, Modules and Categories I. Springer-Verlag, Berlin - Heidelberg - New York, 1973. | MR | Zbl

[2] R. S. FREESE R. N. MCKENZIE: The commutator. an overview, preprint, 1981.

[3] G. GRÄTZER: Universal Algebra. 2 nd edition, Springer-Verlag, New York - Heidelberg - Berlin, 1979. | MR

[4] H. P. GUMM: Geometrical methods in congruence modular algebras. preprint, Darmstadt, 1981. | MR

[5] N. H. MCCOY: The theory of rings. MacMillan, New York, 1964. | MR | Zbl

[6] B. SIVÁK: On the ring of some varieties of groups. in preparation.