A characterization of realcompactness in terms of the topology of pointwise convergence on the function space
Commentationes Mathematicae Universitatis Carolinae, Tome 24 (1983) no. 1, pp. 121-126 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 54A25, 54C35, 54D60
@article{CMUC_1983_24_1_a10,
     author = {Uspenskij, Vladimir Vladimirovich},
     title = {A characterization of realcompactness in terms of the topology of pointwise convergence on the function space},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {121--126},
     year = {1983},
     volume = {24},
     number = {1},
     mrnumber = {703931},
     zbl = {0528.54007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1983_24_1_a10/}
}
TY  - JOUR
AU  - Uspenskij, Vladimir Vladimirovich
TI  - A characterization of realcompactness in terms of the topology of pointwise convergence on the function space
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1983
SP  - 121
EP  - 126
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1983_24_1_a10/
LA  - en
ID  - CMUC_1983_24_1_a10
ER  - 
%0 Journal Article
%A Uspenskij, Vladimir Vladimirovich
%T A characterization of realcompactness in terms of the topology of pointwise convergence on the function space
%J Commentationes Mathematicae Universitatis Carolinae
%D 1983
%P 121-126
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1983_24_1_a10/
%G en
%F CMUC_1983_24_1_a10
Uspenskij, Vladimir Vladimirovich. A characterization of realcompactness in terms of the topology of pointwise convergence on the function space. Commentationes Mathematicae Universitatis Carolinae, Tome 24 (1983) no. 1, pp. 121-126. http://geodesic.mathdoc.fr/item/CMUC_1983_24_1_a10/

[1] APХАНГЕЛЬСКИЙ A. B.: Стройенийе и класификация топологицеских пространств и кардинальные инварианты. - Уcпехи Матем. Наук 33, 6 (1978), 29-84. | MR

[2] A. V. ARHANGEL'SKII: Functional tightness, Q-spaces and $\pi $ -embeddings. Comment. Math. Univ. Carolinae, 24 (1983). | MR

[3] N. NOBLE: The continuity of functions on Cartesian products. Trans. Amer. Math. Soc. 149 (1970), 187-198. | MR | Zbl

[4] S. MAZUR: On continuous mappings on Cartesian products. Fund. Math. 39 (1952), 229-238. | MR

[5] R. M. SOLOVAY: Real-valued measurable cardinals. Proc. Symp. Pure Math. 13 (1971), 397-428. | MR | Zbl

[6] D. V. ČUDNOVSKII: Sequentially continuous mappings and realvalued measurable cardinals. Infinite and Finite Sets (Budapest 1973).