Homomorphism theorem for equationally partial algebras
Commentationes Mathematicae Universitatis Carolinae, Tome 24 (1983) no. 1, pp. 1-15 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 08A35, 08A55, 18A32
@article{CMUC_1983_24_1_a0,
     author = {Reichel, Horst},
     title = {Homomorphism theorem for equationally partial algebras},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {1--15},
     year = {1983},
     volume = {24},
     number = {1},
     mrnumber = {703921},
     zbl = {0515.08005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1983_24_1_a0/}
}
TY  - JOUR
AU  - Reichel, Horst
TI  - Homomorphism theorem for equationally partial algebras
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1983
SP  - 1
EP  - 15
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1983_24_1_a0/
LA  - en
ID  - CMUC_1983_24_1_a0
ER  - 
%0 Journal Article
%A Reichel, Horst
%T Homomorphism theorem for equationally partial algebras
%J Commentationes Mathematicae Universitatis Carolinae
%D 1983
%P 1-15
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1983_24_1_a0/
%G en
%F CMUC_1983_24_1_a0
Reichel, Horst. Homomorphism theorem for equationally partial algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 24 (1983) no. 1, pp. 1-15. http://geodesic.mathdoc.fr/item/CMUC_1983_24_1_a0/

[1] BENECKE K., REICHEL H.: Equational Partiality. to appear in Algebra Universalis. | MR | Zbl

[2] BENECKE K., KAPHENGST H., REICHEL H.: Partial Algebras defined by Generators and Relations. to appear in Algebra Universalis. | MR

[3] GABRIEL P., ULMER F.: Lolcal präsentierbare Kategorien. Lect. Notes in Math. 221 (1971).

[4] KAPHENGST H., REICHEL H.: Operative Theories und Kategerien von operativen Systemen. in: Studien zur Algebra und ihren Anwendungen, Akademie-Verlag, Berlin 1972 -41-56.

[5] REICHEL H.: Kanonische Zerlegung von Funktoren. Math. Nachrichten 41 (1969), 361-370. | MR | Zbl

[6] REICHEL H.: Theorie der Äquoide. Dissertation B, Humboldt-Universität, Berlin (1979).

[7] RICHTER G.: Kategorielle Algebra. Studien zur Algebra und ihren Anwendungen, Bd. 3, Akademie-Verlag, Berlin, 1979. | MR | Zbl