On equilibrium point in topological vector spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 4, pp. 727-738 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 46A15, 46A50, 46A55, 47H10
@article{CMUC_1982_23_4_a9,
     author = {Had\v{z}i\'c, Olga},
     title = {On equilibrium point in topological vector spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {727--738},
     year = {1982},
     volume = {23},
     number = {4},
     mrnumber = {687567},
     zbl = {0507.47039},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a9/}
}
TY  - JOUR
AU  - Hadžić, Olga
TI  - On equilibrium point in topological vector spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1982
SP  - 727
EP  - 738
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a9/
LA  - en
ID  - CMUC_1982_23_4_a9
ER  - 
%0 Journal Article
%A Hadžić, Olga
%T On equilibrium point in topological vector spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1982
%P 727-738
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a9/
%G en
%F CMUC_1982_23_4_a9
Hadžić, Olga. On equilibrium point in topological vector spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 4, pp. 727-738. http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a9/

[1] F. BROWDER: Fixed point theory of multivalued mappings in topological vector space. Math. Ann 177 (1968), 283-301. | MR

[2] K. FAN: Fixed point and minimax theorems in locally convex topological linear spaces. Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121-126. | MR | Zbl

[3] O. HADŽIĆ: On the admissibility of topological vector spaces. Acta Sci. Math. Szeged 42 (1980), 81-85. | MR

[4] O. HADŽIĆ: Some fixed point and almost fixed point theorems for multivalued mappings in topological vector spaces. Nonlinear Analysis, Theory, Methods and Applications Vol. 5, No. 9 (1981), 1009-1019. | MR

[5] O. HADŽIĆ: On multivalued mappings in paranormed spaces. Comment. Math. Univ. Carolinae 22 (1981), 129-136. | MR

[6] S. HAHN: Zur Theorie nichtlinearer Operatorengleichungen in topologischen Vektorräumen. Dissertation B, TU Dresden, 1978.

[7] S. HAHN: A remark on a fixed point theorem for condensing set-valued mappings. Informationen, Technische Universität, Dresden, 07-5-77.

[8] S. HAHN: Zur Bedeutung der Fixpunktsatzes von Schauder für die Fixpunkttheorie nicht notwendig kompakter Abbildungen. Beiträge zur Analysis 16 (1981), 105-119. | MR

[9] S. HAHN F. K. PÖTTER: Übeг Fixpunkte kompakter Abbildungen in topologischen Vektor Räumen. Stud. Math. 50 (1974), 1-16. | MR

[10] J. ISHII: On the admiseibility of function spaces. J. Fac. Sci. Hokkaido Univ. Series I, 19 (1965/66), 49-55. | MR

[11] V. KLEE: Leray-Schauder theory without local convexity. Math. Ann. 141 (1960), 286-296. | MR | Zbl

[12] C. KRAUTHAUSEN: On the theorems of Dugundji and Schauder for certain nonconvex spaces. Math. Bakanica 4 (1974), 365-369. | MR | Zbl

[13] C. KRAUTHAUSEN: Der Fixpunktsatz von Schauder in nicht notwendig konvexen Räumen sowie Anwendungen auf Hammerstein'sche Gleichungen. Doktors Dissertation, Aschen 1976.

[14] T. RIEDRICH: Die Räume $L^p (0,1)$ sind zulässig. Wiss. Z. Techn. Univ. Dresden 12 (1963), 1149-1152. | MR | Zbl

[15] T. RIEDRICH: Der Raum $S(0,1)$ ist zulässig. Wiss. Z. Techn. Univ. Dresden 13 (1964), 1-6. | MR | Zbl

[16] B. RZEPECKI: Remarks on Schauder's Fixed Point Theorem. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 589-603.

[17] P. TALLÓS: On Nash-equilibrium trajectories of multivalued differential equations. Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös nominatae, Sectio Mathematica, Tomus XXII-XXIII, 1979-1980, 235-242. | MR

[18] K. ZIMA: On the Schauder fixed point theorem with respect to paranormed spaces. Comment. Math. 19 (1977), 421-423. | MR