@article{CMUC_1982_23_4_a9,
author = {Had\v{z}i\'c, Olga},
title = {On equilibrium point in topological vector spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {727--738},
year = {1982},
volume = {23},
number = {4},
mrnumber = {687567},
zbl = {0507.47039},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a9/}
}
Hadžić, Olga. On equilibrium point in topological vector spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 4, pp. 727-738. http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a9/
[1] F. BROWDER: Fixed point theory of multivalued mappings in topological vector space. Math. Ann 177 (1968), 283-301. | MR
[2] K. FAN: Fixed point and minimax theorems in locally convex topological linear spaces. Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121-126. | MR | Zbl
[3] O. HADŽIĆ: On the admissibility of topological vector spaces. Acta Sci. Math. Szeged 42 (1980), 81-85. | MR
[4] O. HADŽIĆ: Some fixed point and almost fixed point theorems for multivalued mappings in topological vector spaces. Nonlinear Analysis, Theory, Methods and Applications Vol. 5, No. 9 (1981), 1009-1019. | MR
[5] O. HADŽIĆ: On multivalued mappings in paranormed spaces. Comment. Math. Univ. Carolinae 22 (1981), 129-136. | MR
[6] S. HAHN: Zur Theorie nichtlinearer Operatorengleichungen in topologischen Vektorräumen. Dissertation B, TU Dresden, 1978.
[7] S. HAHN: A remark on a fixed point theorem for condensing set-valued mappings. Informationen, Technische Universität, Dresden, 07-5-77.
[8] S. HAHN: Zur Bedeutung der Fixpunktsatzes von Schauder für die Fixpunkttheorie nicht notwendig kompakter Abbildungen. Beiträge zur Analysis 16 (1981), 105-119. | MR
[9] S. HAHN F. K. PÖTTER: Übeг Fixpunkte kompakter Abbildungen in topologischen Vektor Räumen. Stud. Math. 50 (1974), 1-16. | MR
[10] J. ISHII: On the admiseibility of function spaces. J. Fac. Sci. Hokkaido Univ. Series I, 19 (1965/66), 49-55. | MR
[11] V. KLEE: Leray-Schauder theory without local convexity. Math. Ann. 141 (1960), 286-296. | MR | Zbl
[12] C. KRAUTHAUSEN: On the theorems of Dugundji and Schauder for certain nonconvex spaces. Math. Bakanica 4 (1974), 365-369. | MR | Zbl
[13] C. KRAUTHAUSEN: Der Fixpunktsatz von Schauder in nicht notwendig konvexen Räumen sowie Anwendungen auf Hammerstein'sche Gleichungen. Doktors Dissertation, Aschen 1976.
[14] T. RIEDRICH: Die Räume $L^p (0,1)$ sind zulässig. Wiss. Z. Techn. Univ. Dresden 12 (1963), 1149-1152. | MR | Zbl
[15] T. RIEDRICH: Der Raum $S(0,1)$ ist zulässig. Wiss. Z. Techn. Univ. Dresden 13 (1964), 1-6. | MR | Zbl
[16] B. RZEPECKI: Remarks on Schauder's Fixed Point Theorem. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 589-603.
[17] P. TALLÓS: On Nash-equilibrium trajectories of multivalued differential equations. Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös nominatae, Sectio Mathematica, Tomus XXII-XXIII, 1979-1980, 235-242. | MR
[18] K. ZIMA: On the Schauder fixed point theorem with respect to paranormed spaces. Comment. Math. 19 (1977), 421-423. | MR