A logical analysis of the truth-reaction paradox
Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 4, pp. 699-713
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1982_23_4_a7,
author = {Bendov\'a, Kamila and H\'ajek, Petr},
title = {A logical analysis of the truth-reaction paradox},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {699--713},
year = {1982},
volume = {23},
number = {4},
mrnumber = {687565},
zbl = {0514.03037},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a7/}
}
Bendová, Kamila; Hájek, Petr. A logical analysis of the truth-reaction paradox. Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 4, pp. 699-713. http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a7/
[1] V. S. CHERNIAVSKY: On limitations of artificial intelligence. Inf. Systems 5 (1980), 121. | Zbl
[2] H. B. ENDERTON: Elements of recursion theory. Handbook of Mathematical Logic (North-Holland P.C. 1977), 527-566. | MR
[3] S. FEFERMAN: Transfinite recursive progressions of axiomatic theories. Journ. Symb. Log. 27 (1962), 259-316. | MR
[4] I. M. HAVEL: The truth-reaction paradox: a probe of limitations of artificial intelligence. Proc. ECAI 82, Orsay 1982.
[5] C. SMORYŃSKI: The incompleteness theorems. Handbook of Math. Logic (North-Holland P.C. 1977), 821-862.
[6] R. SOLOVAY: Provability interpretations of modal logic. Israel Journ. Math. 25 (1976), 287-304. | MR | Zbl