On the symmetry of approximate Dini derivates of arbitrary functions
Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 4, pp. 691-697 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 26A24, 26A27
@article{CMUC_1982_23_4_a6,
     author = {Preiss, David and Zaj{\'\i}\v{c}ek, Lud\v{e}k},
     title = {On the symmetry of approximate {Dini} derivates of arbitrary functions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {691--697},
     year = {1982},
     volume = {23},
     number = {4},
     mrnumber = {687564},
     zbl = {0513.26004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a6/}
}
TY  - JOUR
AU  - Preiss, David
AU  - Zajíček, Luděk
TI  - On the symmetry of approximate Dini derivates of arbitrary functions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1982
SP  - 691
EP  - 697
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a6/
LA  - en
ID  - CMUC_1982_23_4_a6
ER  - 
%0 Journal Article
%A Preiss, David
%A Zajíček, Luděk
%T On the symmetry of approximate Dini derivates of arbitrary functions
%J Commentationes Mathematicae Universitatis Carolinae
%D 1982
%P 691-697
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a6/
%G en
%F CMUC_1982_23_4_a6
Preiss, David; Zajíček, Luděk. On the symmetry of approximate Dini derivates of arbitrary functions. Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 4, pp. 691-697. http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a6/

[1] C. L. BELNA G.T. CARGO M. J. EVANS P. D. HUMKE: Analogues of the Denrjoy-Young-Saks theorem. preprint. | MR

[2] L. ZAJÍČEK: On the symmetry of Dini derivates of arbitrary functions. Comment. Math. Univ. Carolinae 22 (1981), 195-209. | MR

[3] L. ZAJÍČEK: On approximate Dini derivates and one-sided approximate derivatives. Comment. Math. Univ. Carolinae 22 (1981), 549-560. | MR

[4] L. ZAJÍČEK: On cluster sets of arbitrary functions. Fund. Math. 83 (1974), 197-217. | MR