The ranges of nonlinear operators of the polynomial type
Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 4, pp. 671-684 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35J65, 47A55, 47H15, 47J05
@article{CMUC_1982_23_4_a4,
     author = {Vold\v{r}ich, Josef},
     title = {The ranges of nonlinear operators of the polynomial type},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {671--684},
     year = {1982},
     volume = {23},
     number = {4},
     mrnumber = {687562},
     zbl = {0509.47049},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a4/}
}
TY  - JOUR
AU  - Voldřich, Josef
TI  - The ranges of nonlinear operators of the polynomial type
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1982
SP  - 671
EP  - 684
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a4/
LA  - en
ID  - CMUC_1982_23_4_a4
ER  - 
%0 Journal Article
%A Voldřich, Josef
%T The ranges of nonlinear operators of the polynomial type
%J Commentationes Mathematicae Universitatis Carolinae
%D 1982
%P 671-684
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a4/
%G en
%F CMUC_1982_23_4_a4
Voldřich, Josef. The ranges of nonlinear operators of the polynomial type. Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 4, pp. 671-684. http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a4/

[1] J. FREHSE: Solvability and alternative theorems for a class of nonlinear functional equations in Banach spaces. Ark. Math. 17 (1979), no. 1, 93-105. | MR

[2] J. FREHSE: Landesman-Lazer alternative theorems for a class of nonlinear functional equations. Math. Ann. 238 (1978), no. 1, 59-65. | MR | Zbl

[3] S. FUČÍK: Solvability of nonlinear equations and boundary value problems. Society of Czechoslovak mathematicians and physicists, Prague, 1980. | MR

[4] S. FUČÍK M. KRBEC: Boundary value problems with bounded nonlinearity and general null-space of the linear part. Math. Z. 155 (1977), 129-138. | MR

[5] J. VOLDŘICH: Nonlinear noncoercive operator equations. (in Czech), Graduate theses, Charles University, Prague, 1980.