Euler polygons and Kneser's theorem for solutions of differential equations in Banach spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 4, pp. 657-669 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34C30, 34G20
@article{CMUC_1982_23_4_a3,
     author = {Rzepecki, Bogdan},
     title = {Euler polygons and {Kneser's} theorem for solutions of differential equations in {Banach} spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {657--669},
     year = {1982},
     volume = {23},
     number = {4},
     mrnumber = {687561},
     zbl = {0517.34049},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a3/}
}
TY  - JOUR
AU  - Rzepecki, Bogdan
TI  - Euler polygons and Kneser's theorem for solutions of differential equations in Banach spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1982
SP  - 657
EP  - 669
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a3/
LA  - en
ID  - CMUC_1982_23_4_a3
ER  - 
%0 Journal Article
%A Rzepecki, Bogdan
%T Euler polygons and Kneser's theorem for solutions of differential equations in Banach spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1982
%P 657-669
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a3/
%G en
%F CMUC_1982_23_4_a3
Rzepecki, Bogdan. Euler polygons and Kneser's theorem for solutions of differential equations in Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 4, pp. 657-669. http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a3/

[1] A. AMBROSETTI: Un teorema di esistenza per le equazioni differenziali negli spazi di Banach. Rend. Sem. Mat. Univ. Padova 39 (1967), 349-360. | MR | Zbl

[2] K. DEIMLING: Ordinary differential equations in Banach spaces. Lect. Notes in Math. 596, Springer-Verlag, Berlin 1977. | MR | Zbl

[3] K. GOEBEL E. RZYMOWSKI: An existence theorem for the equation $x' = f(t,x)$ in Banach space. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 28 (1970), 367-370. | MR

[4] R. H. MARTIN, Jr.: Nonlinear operators and differential equations in Banach spaces. John Wiley and Sons, New York 1976. | MR | Zbl

[5] B. RZEPECKI: On the method of Euler polygons for the differential equation in a locally convex space. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 23 (1975), 411-414. | MR | Zbl

[6] B. RZEPECKI: Differential equations in linear spaces. PhD Thesis, University of Poznań, 1976.

[7] B. RZEPECKI: A functional differential equation in a Banach space. Ann. Polon. Math. 36 (1979), 95-100. | MR | Zbl

[8] B. RZEPECKI: On measure of noncompactness in topological spaces. Comment. Math. Univ. Carolinae 23 (1982), 105-116. | MR

[9] S. SZUFLA: Structure of the solutions set of ordinary differential equations in Banach space. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 21 (1973), 141-144. | MR | Zbl

[10] S. SZUFLA: Kneser's theorem for weak solutions of ordinary differential equations in reflexive Banach spaces. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 26 (1978), 407-413. | MR | Zbl