@article{CMUC_1982_23_4_a15,
author = {Mitchell, Rae W. J.},
title = {Another note on closed $N$-cells in ${\bf R}^N$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {805--810},
year = {1982},
volume = {23},
number = {4},
mrnumber = {687573},
zbl = {0518.57011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a15/}
}
Mitchell, Rae W. J. Another note on closed $N$-cells in ${\bf R}^N$. Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 4, pp. 805-810. http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a15/
[1] R. H. BING: A surface is tame if its complement is 1-ULC. Trans. Amer. Math. Soc. 101 (1961) 294 - 305. | MR | Zbl
[2] G. E. BREDON: Sheaf Theory. McGraw-Hill, 1967. | MR | Zbl
[3] J. W. CANNON: What is a topological manifold ? - the recognition problem. Bull. Amer. Math. Soc. 84 (1978) 832 - 866. | MR
[4] S. FERRY: Homotoping $\varepsilon $-maps to homeomorphisms. Amer. J. Math. 101 (1979) 567 - 582. | MR | Zbl
[5] R. H. FOX E. ARTIN: Some wild cells and spheres in three dimensional space. Annals of Maths., 49 (1948) 979 - 990. | MR
[6] B. GRAY: Homotopy Theory; an introduction to algebraic topology. Academic Press, 1975. | MR | Zbl
[7] S.-T. HU: Theory of Retracts. Wayne state University Press, 1965. | MR | Zbl
[8] S.-T. HU: Homotopy Theory. Academic Press, 1959. | MR | Zbl
[9] R. C. KIRBY: Stable homeomorphisms and the annulus conjecture. Annals of Maths. 89 (1969) 575 - 582. | MR | Zbl
[10] Y. KODAMA: Maps of a fully normal space into an absolute neighbourhood retract. Sci. Reports Tokyo Kyoiku Daigaku, Sect. A 5 (19S5) 37-47. | MR
[11] M. MARKL: A note on closed N-cells in $R^N$. Comment. Math. Univ. Carolinae 23 (1982) 355 - 357. | MR