An elimination of the predicate “to be a standard member” in nonstandard models of arithmetic
Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 4, pp. 785-803 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 03E70, 03H05, 03H10, 03H15
@article{CMUC_1982_23_4_a14,
     author = {\v{C}uda, Karel},
     title = {An elimination of the predicate {\textquotedblleft}to be a standard member{\textquotedblright} in nonstandard models of arithmetic},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {785--803},
     year = {1982},
     volume = {23},
     number = {4},
     mrnumber = {687572},
     zbl = {0522.03059},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a14/}
}
TY  - JOUR
AU  - Čuda, Karel
TI  - An elimination of the predicate “to be a standard member” in nonstandard models of arithmetic
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1982
SP  - 785
EP  - 803
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a14/
LA  - en
ID  - CMUC_1982_23_4_a14
ER  - 
%0 Journal Article
%A Čuda, Karel
%T An elimination of the predicate “to be a standard member” in nonstandard models of arithmetic
%J Commentationes Mathematicae Universitatis Carolinae
%D 1982
%P 785-803
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a14/
%G en
%F CMUC_1982_23_4_a14
Čuda, Karel. An elimination of the predicate “to be a standard member” in nonstandard models of arithmetic. Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 4, pp. 785-803. http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a14/

[Č 1] K. ČUDA: The relation between $\varepsilon - \delta $ procedures and the infinitely small in nonstandard methods. Set Theory and Hierarchy Theory V, Lecture Notes in Mathematics 619. | MR

[Č 2] K. ČUDA: An elimination of infinitely small quantities and infinitely large numbers. (within the framework of AST), Comment. Math. Univ. Carolinae 21 (1980). 433-445. | MR

[V] P. VOPĚNKA: Mathematics in the alternative set theory. Teubner-Texte Leipzig 1979. | MR