Restricted mean value property in axiomatic potential theory
Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 4, pp. 613-628 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 31B25, 31C05, 31D05
@article{CMUC_1982_23_4_a0,
     author = {Vesel\'y, Ji\v{r}{\'\i}},
     title = {Restricted mean value property in axiomatic potential theory},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {613--628},
     year = {1982},
     volume = {23},
     number = {4},
     mrnumber = {687558},
     zbl = {0513.31009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a0/}
}
TY  - JOUR
AU  - Veselý, Jiří
TI  - Restricted mean value property in axiomatic potential theory
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1982
SP  - 613
EP  - 628
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a0/
LA  - en
ID  - CMUC_1982_23_4_a0
ER  - 
%0 Journal Article
%A Veselý, Jiří
%T Restricted mean value property in axiomatic potential theory
%J Commentationes Mathematicae Universitatis Carolinae
%D 1982
%P 613-628
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a0/
%G en
%F CMUC_1982_23_4_a0
Veselý, Jiří. Restricted mean value property in axiomatic potential theory. Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 4, pp. 613-628. http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a0/

[1] ASH R. B.: Measure, Integration and Functional Analysis. Academic Press, New York and London 1972. | MR | Zbl

[2] BAUER H.: Harmonische Räume und ihre Potentialtheorie. Springer Verlag, Berlin 1966. | MR | Zbl

[3] CONSTANTINESCU C., CORNE A.: Potential Theory on Harmonic Spaces. Springer Verlag, New York 1972. | MR

[4] FENTON P. C.: On sufficient conditions for harmonicity. Trans. Amer. Math, Soc. 253 (1979), 139-147. | MR | Zbl

[5] HEATH D.: Functions possessing restricted mean value properties. Proc. Amer. Math. Soc 41 (1973), 588-595. | MR | Zbl

[6] KELLOG O. D.: Converses of Gauss's theorem on the arithmetic mean. Trans. Amer. Math. Soc. 36 (1934), 227-242. | MR

[7] LEBESGUE H.: Sur le problème de Dirichlet. C. R. Acad. Sci. Paris 154 (1912), 335-337.

[8] LEBESGUE H.: Sur le théorème de la moyenne de Gauss. Bull. Soc. Math, France 40 (1912), 16-17.

[9] NETUKA I.: Harmonic functions and the mean value theorems. (in Czech), Čas. pěst. mat. 100 (1975), 391-409. | MR

[10] NETUKA I.: L'unicité du problème de Dirichlet généralisé pour un compact. in; Séminaire de Théorie du Potentiel Paris, No. 6, Lecture Notes in Mathematics 906, Springer Verlag, Berlin 1982, 269-281. | MR | Zbl

[11] ØKSENDAL B., STROOCK D. W.: A characterization of harmonic measure and Markov processes whose hitting distributions are preserved by rotations. translations and dilatations (preprint).

[12] VEECH W. A.: A converse to the mean value theorem for harmonic functions. Amer. J. Math. 97 (1976), 1007-1027. | MR | Zbl

[13] VESELÝ J.: Sequence solutions of the Dirichlet problem. Čas. pěst. mat. 106 (1981), 84-93. | MR