@article{CMUC_1982_23_4_a0,
author = {Vesel\'y, Ji\v{r}{\'\i}},
title = {Restricted mean value property in axiomatic potential theory},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {613--628},
year = {1982},
volume = {23},
number = {4},
mrnumber = {687558},
zbl = {0513.31009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a0/}
}
Veselý, Jiří. Restricted mean value property in axiomatic potential theory. Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 4, pp. 613-628. http://geodesic.mathdoc.fr/item/CMUC_1982_23_4_a0/
[1] ASH R. B.: Measure, Integration and Functional Analysis. Academic Press, New York and London 1972. | MR | Zbl
[2] BAUER H.: Harmonische Räume und ihre Potentialtheorie. Springer Verlag, Berlin 1966. | MR | Zbl
[3] CONSTANTINESCU C., CORNE A.: Potential Theory on Harmonic Spaces. Springer Verlag, New York 1972. | MR
[4] FENTON P. C.: On sufficient conditions for harmonicity. Trans. Amer. Math, Soc. 253 (1979), 139-147. | MR | Zbl
[5] HEATH D.: Functions possessing restricted mean value properties. Proc. Amer. Math. Soc 41 (1973), 588-595. | MR | Zbl
[6] KELLOG O. D.: Converses of Gauss's theorem on the arithmetic mean. Trans. Amer. Math. Soc. 36 (1934), 227-242. | MR
[7] LEBESGUE H.: Sur le problème de Dirichlet. C. R. Acad. Sci. Paris 154 (1912), 335-337.
[8] LEBESGUE H.: Sur le théorème de la moyenne de Gauss. Bull. Soc. Math, France 40 (1912), 16-17.
[9] NETUKA I.: Harmonic functions and the mean value theorems. (in Czech), Čas. pěst. mat. 100 (1975), 391-409. | MR
[10] NETUKA I.: L'unicité du problème de Dirichlet généralisé pour un compact. in; Séminaire de Théorie du Potentiel Paris, No. 6, Lecture Notes in Mathematics 906, Springer Verlag, Berlin 1982, 269-281. | MR | Zbl
[11] ØKSENDAL B., STROOCK D. W.: A characterization of harmonic measure and Markov processes whose hitting distributions are preserved by rotations. translations and dilatations (preprint).
[12] VEECH W. A.: A converse to the mean value theorem for harmonic functions. Amer. J. Math. 97 (1976), 1007-1027. | MR | Zbl
[13] VESELÝ J.: Sequence solutions of the Dirichlet problem. Čas. pěst. mat. 106 (1981), 84-93. | MR