The space of complete subgraphs of a graph
Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 3, pp. 525-536 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 05C70, 54A35, 54D35, 54D40, 54D55
@article{CMUC_1982_23_3_a9,
     author = {Bell, Murray G.},
     title = {The space of complete subgraphs of a graph},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {525--536},
     year = {1982},
     volume = {23},
     number = {3},
     mrnumber = {677860},
     zbl = {0507.54020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1982_23_3_a9/}
}
TY  - JOUR
AU  - Bell, Murray G.
TI  - The space of complete subgraphs of a graph
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1982
SP  - 525
EP  - 536
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1982_23_3_a9/
LA  - en
ID  - CMUC_1982_23_3_a9
ER  - 
%0 Journal Article
%A Bell, Murray G.
%T The space of complete subgraphs of a graph
%J Commentationes Mathematicae Universitatis Carolinae
%D 1982
%P 525-536
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1982_23_3_a9/
%G en
%F CMUC_1982_23_3_a9
Bell, Murray G. The space of complete subgraphs of a graph. Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 3, pp. 525-536. http://geodesic.mathdoc.fr/item/CMUC_1982_23_3_a9/

[1] E. van DOUWEN: Nonsupercompactness and the reduced measure algebra. Comment. Math. Univ. Carolinae 21 (1980), 507-512. | MR | Zbl

[2] E. van DOUWEN T. C. PRZYMUSIŃSKI: Separable extensions of first countable spaces. Fund. Math. CV (1980), 147-158. | MR

[3] I. JUHÁSZ: Cardinal Functions in Topology. Mathematical Centre Tracts 34, 1971. | MR

[4] K. KUNEN: Inaccessibility properties of cardinals. Doctoral dissertation, (Stanford).

[5] K. KUNEN: Set Theory - An introduction to independence proofs. North Holland Publishing Co. 1980. | MR | Zbl

[6] I. I. PAROVIČENKO: A universal bicompactum of weights $\kappa $. Soviet Math. Dokl. 4 (1963), 592-595. | MR

[7] T. C. PRZYMUSIŃSKI: On continuous images of $\beta N - N$. manuscript 1980.