Fixed points for generalized nonexpansive mappings
Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 3, pp. 443-451 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 47H09, 47H10, 52A01, 52H25, 54H25
@article{CMUC_1982_23_3_a2,
     author = {Rhoades, Billy E. and Singh, K. L. and Whitfield, J. H. M.},
     title = {Fixed points for generalized nonexpansive mappings},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {443--451},
     year = {1982},
     volume = {23},
     number = {3},
     mrnumber = {677853},
     zbl = {0517.47034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1982_23_3_a2/}
}
TY  - JOUR
AU  - Rhoades, Billy E.
AU  - Singh, K. L.
AU  - Whitfield, J. H. M.
TI  - Fixed points for generalized nonexpansive mappings
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1982
SP  - 443
EP  - 451
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1982_23_3_a2/
LA  - en
ID  - CMUC_1982_23_3_a2
ER  - 
%0 Journal Article
%A Rhoades, Billy E.
%A Singh, K. L.
%A Whitfield, J. H. M.
%T Fixed points for generalized nonexpansive mappings
%J Commentationes Mathematicae Universitatis Carolinae
%D 1982
%P 443-451
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1982_23_3_a2/
%G en
%F CMUC_1982_23_3_a2
Rhoades, Billy E.; Singh, K. L.; Whitfield, J. H. M. Fixed points for generalized nonexpansive mappings. Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 3, pp. 443-451. http://geodesic.mathdoc.fr/item/CMUC_1982_23_3_a2/

[1] Dale ALSPACH: A fixed point free nonexpansive map. Proc. Amer. Math. Soc. 82 (1981), 423-424. | MR

[2] L. B. CIRIC: A generalization of Banach's contraction principle. Proc. Amer. Math. Soc. 45 (1974), 267-273. | MR | Zbl

[3] W. G. DOTSON, Jr.: Fixed point theorems for non-expansive mappings in star-shaped subsets of Banach spaces. J. London Math. Soc. 4 (1972), 408-410. | MR

[4] M. EDELSTEIN: An extension of Banach's contraction principle. Proc. Amer. Math. Soc. 12 (1961), 7-10. | MR | Zbl

[5] S. ITOH: Some fixed point theorems in metric spaces. Fundamenta Mathematicae 102 (1979), 109-117. | MR | Zbl

[6] M. A. KRASNOSEL'SKII G. M. VAINIKKO, al.: Approximate solutions of operator equations. Wolters-Noordhoff publishing, Groningen 1972. | MR

[7] H. V. MACHODO: A characterization of convex subsets of normed spaces. Kodai Math. Sem. Rep. 25 (1973), 307-320. | MR

[8] S. A. NAIMPALLY K. L. SINGH: Fixed and common fixed points in convex metric spaces. preprint.

[9] S. A. NAIMPALLY K. L. SINGH J. H. M. WHITFIELD: Fixed points in convex metric spaces. preprint. | MR

[10] B. E. RHOADES: Some fixed point theorems for generalized nonexpansive mappings. preprint. | MR | Zbl

[11] Robert SINE: Remarks on the example of Alspach. preprint.

[12] L. A. TALMAN: Fixed points for condensing multifunctions in metric spaces with convex structure. Kodai Math. Sem. Rep. 29 (1977), 62-70. | MR | Zbl

[13] W. TAKAHASHI: A convexity in metric spaces and nonexpansive mappings I. Kodai Math. Sem. Rep. 22 (1970), 142-149. | MR