@article{CMUC_1982_23_2_a9,
author = {Poljak, Svatopluk and Turz{\'\i}k, Daniel and Pudl\'ak, Pavel},
title = {Extensions of $k$-subsets to $k+1$-subsets - existence versus constructability},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {337--349},
year = {1982},
volume = {23},
number = {2},
mrnumber = {664978},
zbl = {0495.68059},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1982_23_2_a9/}
}
TY - JOUR AU - Poljak, Svatopluk AU - Turzík, Daniel AU - Pudlák, Pavel TI - Extensions of $k$-subsets to $k+1$-subsets - existence versus constructability JO - Commentationes Mathematicae Universitatis Carolinae PY - 1982 SP - 337 EP - 349 VL - 23 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_1982_23_2_a9/ LA - en ID - CMUC_1982_23_2_a9 ER -
%0 Journal Article %A Poljak, Svatopluk %A Turzík, Daniel %A Pudlák, Pavel %T Extensions of $k$-subsets to $k+1$-subsets - existence versus constructability %J Commentationes Mathematicae Universitatis Carolinae %D 1982 %P 337-349 %V 23 %N 2 %U http://geodesic.mathdoc.fr/item/CMUC_1982_23_2_a9/ %G en %F CMUC_1982_23_2_a9
Poljak, Svatopluk; Turzík, Daniel; Pudlák, Pavel. Extensions of $k$-subsets to $k+1$-subsets - existence versus constructability. Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 2, pp. 337-349. http://geodesic.mathdoc.fr/item/CMUC_1982_23_2_a9/
[1] T. BAKER J. GILL R. SOLOVAY: Relativizations of the $P=?NP$ question. SIAM J. Comp. Vol. 4 (1975), 431-442. | MR
[2] C. BERGE: Graphs and Hypergraphs. North-Holland, Amsterdam (1973). | MR | Zbl
[3] J. A. BONDY V. CHVÁTAL: A method in graph theory. Discrete Mathematica 16 (1976), 111-135. | MR
[4] V. CHVÁTAL: On Hamiltonian's ideals. Jouгnal of Combinatorial Theory 12 (1972), 163-168. | MR
[5] J. E. HOPCROFT R. M. KARP: Ann $n^{5/2}$ Algorithm for Maximal Matchings in Bipartite Gгaphs. SIAM J. Comp. Vol. 2 (1973), 225-231. | MR
[6] C. P. SCHNORR: Optimal algoгithms for self-reducible problems. Automata, Languages and Programming 1976, Eds.: S. Michaelson and R. Milner, University Press Edinburgh, 322-337.
[7] A. G. THOMASOM: Hamiltonian cycles and uniquely edge colourable graphs. Advances in Graph Theoгy B. Bollobás, ed., Annals of Discrete Mathematics 3 (1976), 259-268. | MR
[8] C. GREENE D. J. KLEITMAN: Pгoof techniques in the theory of finite sets. Studies in Combinatorics, pp. 22-79, MAA Studles in Math. 17, Math. Assoc. America, Washington, D.C., 1978. | MR