Generic properties of von Kármán equations
Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 2, pp. 399-413 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35B30, 35B32, 35J65, 47A53, 47H15, 58C27, 58D30, 58E07, 73K10, 74B99
@article{CMUC_1982_23_2_a15,
     author = {Quittner, Pavol},
     title = {Generic properties of von {K\'arm\'an} equations},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {399--413},
     year = {1982},
     volume = {23},
     number = {2},
     mrnumber = {664984},
     zbl = {0511.35034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1982_23_2_a15/}
}
TY  - JOUR
AU  - Quittner, Pavol
TI  - Generic properties of von Kármán equations
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1982
SP  - 399
EP  - 413
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1982_23_2_a15/
LA  - en
ID  - CMUC_1982_23_2_a15
ER  - 
%0 Journal Article
%A Quittner, Pavol
%T Generic properties of von Kármán equations
%J Commentationes Mathematicae Universitatis Carolinae
%D 1982
%P 399-413
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1982_23_2_a15/
%G en
%F CMUC_1982_23_2_a15
Quittner, Pavol. Generic properties of von Kármán equations. Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 2, pp. 399-413. http://geodesic.mathdoc.fr/item/CMUC_1982_23_2_a15/

[1] Franců J.: On Signorini problem for von Kármán equations /The case of angular domain/. Aplikace matematiky 24 (1979), 355-371. | MR

[2] Geba K.: The Leray Schauder degree and framed bordism. in La théorie des points fixes et ses applications è l'analyse. Séminaire de Mathématiques Supérieures 1973, Presses de l'Université de Montreal 1975.

[3] Hlaváček I., Naumann J.: Inhomogeneous boundary value prohlems for the von Kármán equations, I. Aplikace matematiky 19 (1974), 253-269. | MR

[4] John O., Nečas J.: On the solvability of von Kámán equations. Aplikace matematiky 20 (1975), 48-62. | MR

[5] Kato T.: Perturbation theory for linear operators. Springer-Verlag, Beгlin - Heidelberg - New York, 1980. | Zbl

[6] Nečas J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967. | MR

[7] Saut J. C., Temam R.: Generic properties of Navieг-Stokes equations: genericity with respect to the boundary values. Indiana Univ. Math. J. 29 (1980), 427-446. | MR

[8] Smale S.: An infinite aimensional version of Sarďs theorem. Amer. J. Math. 87 (1965), 861-866. | MR

[9] Souček J., Souček V.: The Morse Sard theorem for real analytic functions. Comment. Math. Univ. Carolinae 13 (1972), 45-51. | MR