@article{CMUC_1982_23_2_a15,
author = {Quittner, Pavol},
title = {Generic properties of von {K\'arm\'an} equations},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {399--413},
year = {1982},
volume = {23},
number = {2},
mrnumber = {664984},
zbl = {0511.35034},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1982_23_2_a15/}
}
Quittner, Pavol. Generic properties of von Kármán equations. Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 2, pp. 399-413. http://geodesic.mathdoc.fr/item/CMUC_1982_23_2_a15/
[1] Franců J.: On Signorini problem for von Kármán equations /The case of angular domain/. Aplikace matematiky 24 (1979), 355-371. | MR
[2] Geba K.: The Leray Schauder degree and framed bordism. in La théorie des points fixes et ses applications è l'analyse. Séminaire de Mathématiques Supérieures 1973, Presses de l'Université de Montreal 1975.
[3] Hlaváček I., Naumann J.: Inhomogeneous boundary value prohlems for the von Kármán equations, I. Aplikace matematiky 19 (1974), 253-269. | MR
[4] John O., Nečas J.: On the solvability of von Kámán equations. Aplikace matematiky 20 (1975), 48-62. | MR
[5] Kato T.: Perturbation theory for linear operators. Springer-Verlag, Beгlin - Heidelberg - New York, 1980. | Zbl
[6] Nečas J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967. | MR
[7] Saut J. C., Temam R.: Generic properties of Navieг-Stokes equations: genericity with respect to the boundary values. Indiana Univ. Math. J. 29 (1980), 427-446. | MR
[8] Smale S.: An infinite aimensional version of Sarďs theorem. Amer. J. Math. 87 (1965), 861-866. | MR
[9] Souček J., Souček V.: The Morse Sard theorem for real analytic functions. Comment. Math. Univ. Carolinae 13 (1972), 45-51. | MR