Constant and variable drop theorems on metrizable locally convex spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 2, pp. 383-398 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 46A05, 46A99, 47H10, 47H99, 47J25, 52A07, 54C10, 54E15, 54F05, 54H25
@article{CMUC_1982_23_2_a14,
     author = {Turinici, Mihai},
     title = {Constant and variable drop theorems on metrizable locally convex spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {383--398},
     year = {1982},
     volume = {23},
     number = {2},
     mrnumber = {664983},
     zbl = {0497.47030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1982_23_2_a14/}
}
TY  - JOUR
AU  - Turinici, Mihai
TI  - Constant and variable drop theorems on metrizable locally convex spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1982
SP  - 383
EP  - 398
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1982_23_2_a14/
LA  - en
ID  - CMUC_1982_23_2_a14
ER  - 
%0 Journal Article
%A Turinici, Mihai
%T Constant and variable drop theorems on metrizable locally convex spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1982
%P 383-398
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1982_23_2_a14/
%G en
%F CMUC_1982_23_2_a14
Turinici, Mihai. Constant and variable drop theorems on metrizable locally convex spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 2, pp. 383-398. http://geodesic.mathdoc.fr/item/CMUC_1982_23_2_a14/

[1] M. ALTMAN: Contractor directions, directional contractors and directional contractions for solving equations. Pacific J. Math. 62 (1976), 1-18. | MR | Zbl

[2] M. ALTMAN: An application of the method of contractor directions to nonlinear programming. Numer. Funct. Anal. and Optim. 1 (1979), 647-663. | MR | Zbl

[3] E. BISHOP R. R. PHELPS: The support functionals of a convex set. Proc. Symp. Pure Math., vol. VII (Convexity), pp. 27-36, Amer. Math. Soc., Providence R.I., 1963. | MR

[4] H. BRÉZIS F. E. BROWDER: A general principle on ordered sets in nonlinear functional analysis. Adv. in Math. 21 (1976), 355-364. | MR

[5] A. BRØNDSTED: On a lemma of Bishop and Phelps. Pacific J. Math. 55 (1974), 335-341. | MR

[6] A. BRØNDSTED: Fixed points and partial orders. Proc. Amer. Math. Soc. 60 (1976), 365-366. | MR

[7] A. BRØNDSTED: Common fixed points and partial orders. Proc. Amer. Math. Soc. 77 (1979), 365-368. | MR

[8] F. E. BROWDER: Normal solvability and the Fredholm alternative for mappings into infinite dimensional manifolds. J. Funct. Anal. 8 (1971), 250-274. | MR | Zbl

[9] F. E. BROWDER: On a theorem of Caristi and Kirk. Fixed Point Theory and its Applications, pp. 23-27, Academic Press, New York, 1976. | MR | Zbl

[10] J. CARISTI: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc. 215 (1976), 241-251. | MR | Zbl

[11] W. J. CRAMER W. O. RAY: Solvability of nonlinear operator equations. Pacific J. Math. 95 (1981), 37-50. | MR

[12] J. DANEŠ: A geometric theorem useful in nonlinear functional analysis. Boll. Un. Mat. Ital. 6 (1972), 369-375. | MR

[13] D. DOWNING W. A. KIRK: A generalization of Caristi's theorem with applications to nonlinear mapping theory. Pacific J. Math. 69 (1977), 339-346. | MR

[14] I. EKELAND: Sur les problèmes variationals. C.R. Acad. Sci. Paris, 275 (1972), 1057-1059. | MR

[15] I. EKELAND: On the variational principle. J. Math. Anal. Appl. 47 (1974), 324-353. | MR | Zbl

[16] I. EKELAND: Nonconvex minimization problems. Bull. Amer. Math. Soc., N.S. 1 (1979), 443-474. | MR | Zbl

[17] R. B. HOLMES: Geometric functional analysis and its applications. Springer Verlag, New York, 1975. | MR | Zbl

[18] S. KASAHARA: On fixed points in partially ordered sets and Kirk-Caristi theorem. Math. Sem. Notes Kobe Univ. 3 (1975), 229-232. | MR | Zbl

[19] W. A. KIRK: Caristi's fixed point theorem and metric convexity. Colloq. Math. 36 (1976), 81-86. | MR | Zbl

[20] W. A. KIRK J. CARISTI: Mapping theorems in metric and Banach spaces. Bull. Acad. Pol. Sci. 23 (1975), 891-894. | MR

[21] C. KURATOWSKI: Topologie. vol. I, P.W.N., Warszawa, 1958. | MR | Zbl

[22] L. PASICKI: A short proof of the Caristi theorem. Comment. Math. 20 (1977/78), 427-428. | MR

[23] S. I. POHOZHAYEV: On the normal solvability for nonlinear operators. (Russian), Dokl. Akad. Nauk SSSR 184 (1969), 40-43.

[24] J. SIEGEL: A new proof of Caristi's fixed point theorem. Proc. Amer. Math. Soc. 66 (1977), 54-56. | MR | Zbl

[25] M. TURINICI: Maximal elements in partially ordered topological spaces and applications. An. St. Univ. "Al. I. Cuza" Iasi, 24 (1978), 259-264. | MR

[26] M. TURINICI: Function lipschitzian mappings on convex metric spaces. Comment. Math. Univ. Carolinae 22 (1981), 289-303. | MR | Zbl

[27] M. TURINICI: Local and global lipschitzian mappings on ordered metric spaces. Math. Nachrichten, to appear. | MR | Zbl

[28] M. TURINICI: Mapping theorems via variable drops in Banach spaces. Rend. Ist. Lombardo, to appear. | MR | Zbl

[29] C. URSESCU: Sur le contingent dans les espaces de Banach. Proc. Inst. Math. Iasi, pp. 183-184, Ed. Acad. RSR, Bucuresti, 1976. | MR | Zbl

[30] C. S. WONG: On a fixed point theorem of contractive type. Proc. Amer. Math. Soc. 57 (1976), 283-284. | MR | Zbl

[31] P. P. ZABREDCO M. A. KRASNOSELSKII: Solvability of nonlinear operator equations. (Russian), Funkc. Analiz i ego Prilož. 5 (1971), 42-44. | MR