@article{CMUC_1982_23_2_a14,
author = {Turinici, Mihai},
title = {Constant and variable drop theorems on metrizable locally convex spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {383--398},
year = {1982},
volume = {23},
number = {2},
mrnumber = {664983},
zbl = {0497.47030},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1982_23_2_a14/}
}
TY - JOUR AU - Turinici, Mihai TI - Constant and variable drop theorems on metrizable locally convex spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 1982 SP - 383 EP - 398 VL - 23 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_1982_23_2_a14/ LA - en ID - CMUC_1982_23_2_a14 ER -
Turinici, Mihai. Constant and variable drop theorems on metrizable locally convex spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 2, pp. 383-398. http://geodesic.mathdoc.fr/item/CMUC_1982_23_2_a14/
[1] M. ALTMAN: Contractor directions, directional contractors and directional contractions for solving equations. Pacific J. Math. 62 (1976), 1-18. | MR | Zbl
[2] M. ALTMAN: An application of the method of contractor directions to nonlinear programming. Numer. Funct. Anal. and Optim. 1 (1979), 647-663. | MR | Zbl
[3] E. BISHOP R. R. PHELPS: The support functionals of a convex set. Proc. Symp. Pure Math., vol. VII (Convexity), pp. 27-36, Amer. Math. Soc., Providence R.I., 1963. | MR
[4] H. BRÉZIS F. E. BROWDER: A general principle on ordered sets in nonlinear functional analysis. Adv. in Math. 21 (1976), 355-364. | MR
[5] A. BRØNDSTED: On a lemma of Bishop and Phelps. Pacific J. Math. 55 (1974), 335-341. | MR
[6] A. BRØNDSTED: Fixed points and partial orders. Proc. Amer. Math. Soc. 60 (1976), 365-366. | MR
[7] A. BRØNDSTED: Common fixed points and partial orders. Proc. Amer. Math. Soc. 77 (1979), 365-368. | MR
[8] F. E. BROWDER: Normal solvability and the Fredholm alternative for mappings into infinite dimensional manifolds. J. Funct. Anal. 8 (1971), 250-274. | MR | Zbl
[9] F. E. BROWDER: On a theorem of Caristi and Kirk. Fixed Point Theory and its Applications, pp. 23-27, Academic Press, New York, 1976. | MR | Zbl
[10] J. CARISTI: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc. 215 (1976), 241-251. | MR | Zbl
[11] W. J. CRAMER W. O. RAY: Solvability of nonlinear operator equations. Pacific J. Math. 95 (1981), 37-50. | MR
[12] J. DANEŠ: A geometric theorem useful in nonlinear functional analysis. Boll. Un. Mat. Ital. 6 (1972), 369-375. | MR
[13] D. DOWNING W. A. KIRK: A generalization of Caristi's theorem with applications to nonlinear mapping theory. Pacific J. Math. 69 (1977), 339-346. | MR
[14] I. EKELAND: Sur les problèmes variationals. C.R. Acad. Sci. Paris, 275 (1972), 1057-1059. | MR
[15] I. EKELAND: On the variational principle. J. Math. Anal. Appl. 47 (1974), 324-353. | MR | Zbl
[16] I. EKELAND: Nonconvex minimization problems. Bull. Amer. Math. Soc., N.S. 1 (1979), 443-474. | MR | Zbl
[17] R. B. HOLMES: Geometric functional analysis and its applications. Springer Verlag, New York, 1975. | MR | Zbl
[18] S. KASAHARA: On fixed points in partially ordered sets and Kirk-Caristi theorem. Math. Sem. Notes Kobe Univ. 3 (1975), 229-232. | MR | Zbl
[19] W. A. KIRK: Caristi's fixed point theorem and metric convexity. Colloq. Math. 36 (1976), 81-86. | MR | Zbl
[20] W. A. KIRK J. CARISTI: Mapping theorems in metric and Banach spaces. Bull. Acad. Pol. Sci. 23 (1975), 891-894. | MR
[21] C. KURATOWSKI: Topologie. vol. I, P.W.N., Warszawa, 1958. | MR | Zbl
[22] L. PASICKI: A short proof of the Caristi theorem. Comment. Math. 20 (1977/78), 427-428. | MR
[23] S. I. POHOZHAYEV: On the normal solvability for nonlinear operators. (Russian), Dokl. Akad. Nauk SSSR 184 (1969), 40-43.
[24] J. SIEGEL: A new proof of Caristi's fixed point theorem. Proc. Amer. Math. Soc. 66 (1977), 54-56. | MR | Zbl
[25] M. TURINICI: Maximal elements in partially ordered topological spaces and applications. An. St. Univ. "Al. I. Cuza" Iasi, 24 (1978), 259-264. | MR
[26] M. TURINICI: Function lipschitzian mappings on convex metric spaces. Comment. Math. Univ. Carolinae 22 (1981), 289-303. | MR | Zbl
[27] M. TURINICI: Local and global lipschitzian mappings on ordered metric spaces. Math. Nachrichten, to appear. | MR | Zbl
[28] M. TURINICI: Mapping theorems via variable drops in Banach spaces. Rend. Ist. Lombardo, to appear. | MR | Zbl
[29] C. URSESCU: Sur le contingent dans les espaces de Banach. Proc. Inst. Math. Iasi, pp. 183-184, Ed. Acad. RSR, Bucuresti, 1976. | MR | Zbl
[30] C. S. WONG: On a fixed point theorem of contractive type. Proc. Amer. Math. Soc. 57 (1976), 283-284. | MR | Zbl
[31] P. P. ZABREDCO M. A. KRASNOSELSKII: Solvability of nonlinear operator equations. (Russian), Funkc. Analiz i ego Prilož. 5 (1971), 42-44. | MR