@article{CMUC_1982_23_2_a1,
author = {Bana\'s, J\'ozef and Hajnosz, Andrzej and Wedrychowicz, Stanis{\l}aw},
title = {On the equation $x' = f(t, x)$ in {Banach} spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {233--247},
year = {1982},
volume = {23},
number = {2},
mrnumber = {664970},
zbl = {0502.34050},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1982_23_2_a1/}
}
TY - JOUR AU - Banaś, Józef AU - Hajnosz, Andrzej AU - Wedrychowicz, Stanisław TI - On the equation $x' = f(t, x)$ in Banach spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 1982 SP - 233 EP - 247 VL - 23 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_1982_23_2_a1/ LA - en ID - CMUC_1982_23_2_a1 ER -
Banaś, Józef; Hajnosz, Andrzej; Wedrychowicz, Stanisław. On the equation $x' = f(t, x)$ in Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 2, pp. 233-247. http://geodesic.mathdoc.fr/item/CMUC_1982_23_2_a1/
[1] A. AMBROSETTI: Un teorema di esistenza per le equazioni differenziali negli spazi di Banach. Rend. Sem. Mat. Univ. Padova 39 (1967), 354-360. | MR | Zbl
[2] J. BANAŚ: On measures of noncompactness in Banach spaces. Comment. Math. Univ. Carolinae 21 (1980), 131-143. | MR
[3] J. BANAŚ K. GOEBEL: Measures of noncompactness in Banach spaces. Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc., Vol. 60 (1980), New York and Basel. | MR
[4] A. CELLINA: On the local existence of solutions of ordinary differential equations. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 20 (1972), 293-296. | MR | Zbl
[5] J. DANEŠ: On densifying and related mappings and their applications in nonlinear functional analysis. Theory of Nonlinear Operators, Akademie-Verlag, Berlin 1974, 15-56. | MR
[6] G. DARBO: Punti uniti in transformazioni a condominino non compatto. Rend. Sem. Math. Univ. Padova 24 (1955), 84-92. | MR
[7] K. DEIMLING: Ordinary differential equations in Banach spaces. Lecture Notes in Mathematics 596, Springer Verlag 1977. | MR | Zbl
[8] K. GOEBEL W. RZYMOWSKT: An existence theorem for the equation $x = f(t,x)$ in Banach space. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 18 (1970), 367-370. | MR
[9] K. KURATOWSKI: Sur les espaces complets. Fund. Math. 15 (1930), 301-309.
[10] T. ROGER: On Nagumo's condition. Canad. Math. Bull. 15 (1972), 609-611.
[11] B. RZEPECKI: Remarks on Schauder's Fixed point principle and its applications. Bull. Acad. Polon. Sci., Sér. Sci. Math. 27 (1979), 473-480. | MR | Zbl
[12] B. N. SADOVSKI: Limit compact and condensing operators. Russian Math. Surveys 27 (1972), 86-144. | MR
[13] S. SZUFLA: Some remarks on ordinary differential equations in Banach spaces. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 16 (1968), 795-800. | MR | Zbl
[14] S. SZUFLA: Measure of noncompactness and ordinary differential equations in Banach spaces. ibidem, 19 (1971), 831-835. | MR
[15] S. SZUFLA: On the existence of solutions of ordinary differential equations in Banach spaces. Boll. Un. Mat. Ital. 5, 15-A (1978), 535-544. | MR | Zbl