On the equation $x' = f(t, x)$ in Banach spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 2, pp. 233-247 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34G20, 47H09
@article{CMUC_1982_23_2_a1,
     author = {Bana\'s, J\'ozef and Hajnosz, Andrzej and Wedrychowicz, Stanis{\l}aw},
     title = {On the equation $x' = f(t, x)$ in {Banach} spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {233--247},
     year = {1982},
     volume = {23},
     number = {2},
     mrnumber = {664970},
     zbl = {0502.34050},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1982_23_2_a1/}
}
TY  - JOUR
AU  - Banaś, Józef
AU  - Hajnosz, Andrzej
AU  - Wedrychowicz, Stanisław
TI  - On the equation $x' = f(t, x)$ in Banach spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1982
SP  - 233
EP  - 247
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1982_23_2_a1/
LA  - en
ID  - CMUC_1982_23_2_a1
ER  - 
%0 Journal Article
%A Banaś, Józef
%A Hajnosz, Andrzej
%A Wedrychowicz, Stanisław
%T On the equation $x' = f(t, x)$ in Banach spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1982
%P 233-247
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1982_23_2_a1/
%G en
%F CMUC_1982_23_2_a1
Banaś, Józef; Hajnosz, Andrzej; Wedrychowicz, Stanisław. On the equation $x' = f(t, x)$ in Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 2, pp. 233-247. http://geodesic.mathdoc.fr/item/CMUC_1982_23_2_a1/

[1] A. AMBROSETTI: Un teorema di esistenza per le equazioni differenziali negli spazi di Banach. Rend. Sem. Mat. Univ. Padova 39 (1967), 354-360. | MR | Zbl

[2] J. BANAŚ: On measures of noncompactness in Banach spaces. Comment. Math. Univ. Carolinae 21 (1980), 131-143. | MR

[3] J. BANAŚ K. GOEBEL: Measures of noncompactness in Banach spaces. Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc., Vol. 60 (1980), New York and Basel. | MR

[4] A. CELLINA: On the local existence of solutions of ordinary differential equations. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 20 (1972), 293-296. | MR | Zbl

[5] J. DANEŠ: On densifying and related mappings and their applications in nonlinear functional analysis. Theory of Nonlinear Operators, Akademie-Verlag, Berlin 1974, 15-56. | MR

[6] G. DARBO: Punti uniti in transformazioni a condominino non compatto. Rend. Sem. Math. Univ. Padova 24 (1955), 84-92. | MR

[7] K. DEIMLING: Ordinary differential equations in Banach spaces. Lecture Notes in Mathematics 596, Springer Verlag 1977. | MR | Zbl

[8] K. GOEBEL W. RZYMOWSKT: An existence theorem for the equation $x = f(t,x)$ in Banach space. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 18 (1970), 367-370. | MR

[9] K. KURATOWSKI: Sur les espaces complets. Fund. Math. 15 (1930), 301-309.

[10] T. ROGER: On Nagumo's condition. Canad. Math. Bull. 15 (1972), 609-611.

[11] B. RZEPECKI: Remarks on Schauder's Fixed point principle and its applications. Bull. Acad. Polon. Sci., Sér. Sci. Math. 27 (1979), 473-480. | MR | Zbl

[12] B. N. SADOVSKI: Limit compact and condensing operators. Russian Math. Surveys 27 (1972), 86-144. | MR

[13] S. SZUFLA: Some remarks on ordinary differential equations in Banach spaces. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 16 (1968), 795-800. | MR | Zbl

[14] S. SZUFLA: Measure of noncompactness and ordinary differential equations in Banach spaces. ibidem, 19 (1971), 831-835. | MR

[15] S. SZUFLA: On the existence of solutions of ordinary differential equations in Banach spaces. Boll. Un. Mat. Ital. 5, 15-A (1978), 535-544. | MR | Zbl