Generic differentiability of mappings and convex functions in Banach and locally convex spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 2, pp. 207-232 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 46A55, 46B20, 46G05, 47H15, 47H99, 58C20, 58C25
@article{CMUC_1982_23_2_a0,
     author = {Le Van Hot},
     title = {Generic differentiability of mappings and convex functions in {Banach} and locally convex spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {207--232},
     year = {1982},
     volume = {23},
     number = {2},
     mrnumber = {664969},
     zbl = {0533.46030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1982_23_2_a0/}
}
TY  - JOUR
AU  - Le Van Hot
TI  - Generic differentiability of mappings and convex functions in Banach and locally convex spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1982
SP  - 207
EP  - 232
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1982_23_2_a0/
LA  - en
ID  - CMUC_1982_23_2_a0
ER  - 
%0 Journal Article
%A Le Van Hot
%T Generic differentiability of mappings and convex functions in Banach and locally convex spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1982
%P 207-232
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1982_23_2_a0/
%G en
%F CMUC_1982_23_2_a0
Le Van Hot. Generic differentiability of mappings and convex functions in Banach and locally convex spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 2, pp. 207-232. http://geodesic.mathdoc.fr/item/CMUC_1982_23_2_a0/

[1] R. ANANTHARAMAN T. LEVIS J. H. M. WHITFIELD: Smoothabilily, strong smoothability and dentability in Banach spaces. Canad. Math. Bull. 24 (1981), 59-68. | MR

[2] N. ARONSZAJN: Differentiability of Lipschitzian mappings between Banach spaces. Studia Math. 57 (1976), 147-190. | MR | Zbl

[3] E. ASPLUND: Fréchet differentiability of convex functions. Acta Math. 121 (1968), 31-48. | MR | Zbl

[4] E. ASPLUND R. J. ROCKAFFELAR: Gradients of convex functions. Trans. Amer. Math. Soc. 139 (1969), 443-467. | MR

[5] J. M. BORWEIN: Weak local supportability and application to approximation. Pacific J. Math. 82 (1979), 323-338. | MR

[6] J. R. CHRISTENSEN: Topology and Borel structure. Math. Studia No. 10 North-Holland, Amsterdam 1974. | Zbl

[7] F. H. CLARK: Generalized gradients and applications. Trans. Amer. Math. Soc. 205 (1975), 247-262. | MR

[8] J. B. COLLIER: A claas of strong differentiability spaces. Proc. Amer. Math. Soc. 53 (1975), 420-422. | MR

[9] J. DIESTEL: Geometry of Banach spaces. Lecture Notes in Math. No. 485, Springer-Verlag 1975. | MR | Zbl

[10] G. EDGAR: Meaaurability in Banach spaces. Indiana Univ. Math. J. 26 (1977), 663-677.

[11] I. EKELAND G. LEBOURG: Generic differentiability and perturbed optimization problems in Banach spaces. Trans. Amer. Math. Soc. 224 (1976), 193-216. | MR

[12] R. E. HUFF P. D. MORRIS: Dual spaces with the Krein-Milman property have the Radon-Nikodym property. Proc. Amer. Math. Soc. 49 (1975), 104-108. | MR

[13] KA SING LAU C. E. WEIL: Differentiability via directional derivatives. Proc. Amer. Math. Soc. 70 (1978), 11-1. | MR

[14] J. KOLOMÝ: On the differentiability of operators and convex functions. Comment. Math. Univ. Carolinae 9 (1968), 441-454. | MR

[15] M. K. KRASNOSELSKIJ P. P. ZABREJKO E. I. PUSTYLNIK P. E. SOBOLEVSKIJ: Integralnyje operatory v prostranstvach summirujemych funkcij. Moskva 1966.

[16] KUTATELADZE: Vypuklyje operatory. Uspechy Mat. nauk 34 (1979), 167-196.

[17] D. G. LARMAN R. R. PHELPS: Gâteaux differentiability of convex functions on Banach spaces. London Math. Soc. 20 (1979), 115-127. | MR

[18] G. LEBOURG: Generic differentiability of Lipschitzian functions. Trans. Amer. Math. Soc. 256 (1979), 125-144. | MR | Zbl

[19] P. MANKIEWICZ: On Lipschitz mapping between Fréchet spaces. Studia Math. 41 (1972), 225-241. | MR

[20] F. MIGNOT: Côntrol danse lea variationelles elliptiques. J. Functional Analysis 22 (2) (1976). | MR

[21] I. NAMIOKA R. R. PHELPS: Banach spaces which are Asplund spaces. Duke Math. J.-42 (1975), 735-750. | MR

[22] K. RITTER: Optimization theory in linear spaces: part III, Mathematical programming in partial ordered Banach spaces. Math. Ann. 184 (1970), 133-154. | MR

[23] H. H. SCHAEFER: Banach lattices and positive operators. Springer-Verlag, New York 1974. | MR | Zbl

[24] M. TALAGRAND: Deux examples de fonetions convexes. C.R. Acad. Sci. AB 288, No 8 (1979), A461-A464. | MR

[25] M. M. VAJNBERG: Variacionnyje metody issledovanija neline jnych operatorov. Nauka, Moskva 1956.

[26] S. YAMAMURO: Differential calculus in topological linear spaces. Lecture Notes in Mathematics No 374, Springer-Verlag, New York 1974. | MR | Zbl

[27] Ch. STEGALL: The duality between Asplund spaces and spaces with Radon-Nikodym property. Israel J. Math. 59 (1978), 408-412. | MR