@article{CMUC_1982_23_1_a8,
author = {Ku\v{c}era, Anton{\'\i}n},
title = {On recursive measure of classes of recursive sets},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {117--121},
year = {1982},
volume = {23},
number = {1},
mrnumber = {653355},
zbl = {0493.03035},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1982_23_1_a8/}
}
Kučera, Antonín. On recursive measure of classes of recursive sets. Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 1, pp. 117-121. http://geodesic.mathdoc.fr/item/CMUC_1982_23_1_a8/
[1] O. DEMUTH: The Lebesgue measurability of sets in constructive mathematics. Comment. Math. Univ. Carolinae 10 (1969), 463-492 (in Russian). | MR
[2] O. DEMUTH A. KUČERA: Remarks on constructive mathematical analysis. Logic Colloquium '78 (Boffa, van Dalen, McAlcon editors), North-Holland, Amsterdam, 1979, 81-129. | MR
[3] R. M. FRIEDBERG: A criterion for completeness of degrees of unsolvability. J. Symbol. Logic 22 (1957), 159-160. | MR | Zbl
[4] C. G. JOCKUSCH: Degrees in which the recursive sets are uniformly recursive. Canad. J. Math. 24 (1972), 1092-1099. | MR | Zbl
[5] C. G. JOCKUSCH R. I. SCARE: $\Pi_1^0$ classes and degrees of theories. Trans. Amer. Math. Soc. 173 (1972), 33-56. | MR
[6] D. A. MARTIN: Classes of recursively enumerable sets and degrees of unsolvability. Z. Math. Logik Grundlagen Math. 12 (1966), 295-310. | MR
[7] H. ROGERS: Theory of recursive functions and effective computability. McGraw-Hill, New York, 1967. | MR | Zbl
[8] I. D. ZASLAVSKIJ G. S. CEJTIN: On singular coverings and related properties of constructive functions. Trudy Mat. Inst. Steklov. 67 (1962), 458-502; English transl. Amer. rath. Soc. Transl. (2) 98 (1971), 41-89. | MR