The number of minimal varieties of idempotent groupoids
Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 1, pp. 199-205
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1982_23_1_a17,
author = {Je\v{z}ek, Jaroslav},
title = {The number of minimal varieties of idempotent groupoids},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {199--205},
year = {1982},
volume = {23},
number = {1},
mrnumber = {653364},
zbl = {0502.08008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1982_23_1_a17/}
}
Ježek, Jaroslav. The number of minimal varieties of idempotent groupoids. Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 1, pp. 199-205. http://geodesic.mathdoc.fr/item/CMUC_1982_23_1_a17/
[1] A. D. BOL'BOT: Ob ekvacional'no polnych mnogoobrazijach total'no simmetričeskich kvazigrupp. Algebra i logika 6/2 (1967), 13-19. | MR
[2] J. KALICKI: The number of equationally complete classes of equations. Indag. Math. 17 (1955), 660-662. | MR | Zbl
[3] G. McNULTY: The decision problem for equational bases of algebras. Annals of Math. Logic 10 (1976), 193-2 59. | MR | Zbl
[4] G. McNULTY: Structural diversity in the lattice of equational theories. (to appear). | MR | Zbl
[5] D. PIGOZZI: Universal equational theories and varieties of algebras. Annals of Math. Logic 17 (1979), 117-150. | MR | Zbl