Two-valued measure need not be purely $\aleph_0$-compact
Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 1, pp. 167-171 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 28A12, 54A25
@article{CMUC_1982_23_1_a13,
     author = {Aniszczyk, Bohdan},
     title = {Two-valued measure need not be purely $\aleph_0$-compact},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {167--171},
     year = {1982},
     volume = {23},
     number = {1},
     mrnumber = {653360},
     zbl = {0496.28005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1982_23_1_a13/}
}
TY  - JOUR
AU  - Aniszczyk, Bohdan
TI  - Two-valued measure need not be purely $\aleph_0$-compact
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1982
SP  - 167
EP  - 171
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1982_23_1_a13/
LA  - en
ID  - CMUC_1982_23_1_a13
ER  - 
%0 Journal Article
%A Aniszczyk, Bohdan
%T Two-valued measure need not be purely $\aleph_0$-compact
%J Commentationes Mathematicae Universitatis Carolinae
%D 1982
%P 167-171
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1982_23_1_a13/
%G en
%F CMUC_1982_23_1_a13
Aniszczyk, Bohdan. Two-valued measure need not be purely $\aleph_0$-compact. Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 1, pp. 167-171. http://geodesic.mathdoc.fr/item/CMUC_1982_23_1_a13/

[1] W. W. COMFORT S. NEGREPONTIS: The theory of ultrafilters. Berlin - Heidelberg - New York, Springer 1974. | MR

[2] Z. FROLÍK J. PACHL: Pure measures. Comment. Math. Univ. Carolinae 14 (1973), 279-293. | MR

[3] J. PACHL: Every weakly compact probability is compact. Bull. Acad. Polon. Sci., Sér. Math. Astronom. Phys. 23 (1975), 401-405. | MR | Zbl