Two-valued measure need not be purely $\aleph_0$-compact
Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 1, pp. 167-171
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1982_23_1_a13,
author = {Aniszczyk, Bohdan},
title = {Two-valued measure need not be purely $\aleph_0$-compact},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {167--171},
year = {1982},
volume = {23},
number = {1},
mrnumber = {653360},
zbl = {0496.28005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1982_23_1_a13/}
}
Aniszczyk, Bohdan. Two-valued measure need not be purely $\aleph_0$-compact. Commentationes Mathematicae Universitatis Carolinae, Tome 23 (1982) no. 1, pp. 167-171. http://geodesic.mathdoc.fr/item/CMUC_1982_23_1_a13/
[1] W. W. COMFORT S. NEGREPONTIS: The theory of ultrafilters. Berlin - Heidelberg - New York, Springer 1974. | MR
[2] Z. FROLÍK J. PACHL: Pure measures. Comment. Math. Univ. Carolinae 14 (1973), 279-293. | MR
[3] J. PACHL: Every weakly compact probability is compact. Bull. Acad. Polon. Sci., Sér. Math. Astronom. Phys. 23 (1975), 401-405. | MR | Zbl