@article{CMUC_1981_22_4_a5,
author = {Howard, Joe},
title = {Pelczynski's property $V$ for {Banach} spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {701--704},
year = {1981},
volume = {22},
number = {4},
mrnumber = {647018},
zbl = {0486.46011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1981_22_4_a5/}
}
Howard, Joe. Pelczynski's property $V$ for Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 22 (1981) no. 4, pp. 701-704. http://geodesic.mathdoc.fr/item/CMUC_1981_22_4_a5/
[1] A. GROTHENDIECK: Sur les applications linéaires faiblement compact d'espace du type $C(K)$. Canad. J. Math. 5 (1953), 129-173. | MR
[2] J. HOWARD K. MELENDEZ: Sufficient conditions for a continuous linear operator to be weakly compact. Bull. Austral. Math. Soc. 7 (1972), 183-190. | MR
[3] H. E. LACEY P. D. MORRIS: On spaces of type $A(K)$ and their duals. Proc. Amer. Math. Soc. 23 (1969), 151-157. | MR
[4] A. PELCZYNSKI: Banach spaces in which every unconditionally converging operator is weakly compact. Bull. Acad. Polon. Sci. 10 (1962), 641-648. | MR
[5] D. I. REINOV: The Radon-Nlkodym property, and integral representations of linear operators. (Russian), Funkc. Anal. Prilož. 9 (1975), 87-88 (English translation: Functional Anal. Appl. 9 (1975), 354-355 (1976)). | MR