Pelczynski's property $V$ for Banach spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 22 (1981) no. 4, pp. 701-704 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 46B10, 46B20, 47B06, 47B39, 47B99, 47839
@article{CMUC_1981_22_4_a5,
     author = {Howard, Joe},
     title = {Pelczynski's property $V$ for {Banach} spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {701--704},
     year = {1981},
     volume = {22},
     number = {4},
     mrnumber = {647018},
     zbl = {0486.46011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1981_22_4_a5/}
}
TY  - JOUR
AU  - Howard, Joe
TI  - Pelczynski's property $V$ for Banach spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1981
SP  - 701
EP  - 704
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1981_22_4_a5/
LA  - en
ID  - CMUC_1981_22_4_a5
ER  - 
%0 Journal Article
%A Howard, Joe
%T Pelczynski's property $V$ for Banach spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1981
%P 701-704
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1981_22_4_a5/
%G en
%F CMUC_1981_22_4_a5
Howard, Joe. Pelczynski's property $V$ for Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 22 (1981) no. 4, pp. 701-704. http://geodesic.mathdoc.fr/item/CMUC_1981_22_4_a5/

[1] A. GROTHENDIECK: Sur les applications linéaires faiblement compact d'espace du type $C(K)$. Canad. J. Math. 5 (1953), 129-173. | MR

[2] J. HOWARD K. MELENDEZ: Sufficient conditions for a continuous linear operator to be weakly compact. Bull. Austral. Math. Soc. 7 (1972), 183-190. | MR

[3] H. E. LACEY P. D. MORRIS: On spaces of type $A(K)$ and their duals. Proc. Amer. Math. Soc. 23 (1969), 151-157. | MR

[4] A. PELCZYNSKI: Banach spaces in which every unconditionally converging operator is weakly compact. Bull. Acad. Polon. Sci. 10 (1962), 641-648. | MR

[5] D. I. REINOV: The Radon-Nlkodym property, and integral representations of linear operators. (Russian), Funkc. Anal. Prilož. 9 (1975), 87-88 (English translation: Functional Anal. Appl. 9 (1975), 354-355 (1976)). | MR