On interpretability in theories containing arithmetic. II
Commentationes Mathematicae Universitatis Carolinae, Tome 22 (1981) no. 4, pp. 667-688 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 03B45, 03F25, 03F30, 03F35
@article{CMUC_1981_22_4_a3,
     author = {H\'ajek, Petr},
     title = {On interpretability in theories containing arithmetic. {II}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {667--688},
     year = {1981},
     volume = {22},
     number = {4},
     mrnumber = {647016},
     zbl = {0487.03032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1981_22_4_a3/}
}
TY  - JOUR
AU  - Hájek, Petr
TI  - On interpretability in theories containing arithmetic. II
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1981
SP  - 667
EP  - 688
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1981_22_4_a3/
LA  - en
ID  - CMUC_1981_22_4_a3
ER  - 
%0 Journal Article
%A Hájek, Petr
%T On interpretability in theories containing arithmetic. II
%J Commentationes Mathematicae Universitatis Carolinae
%D 1981
%P 667-688
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1981_22_4_a3/
%G en
%F CMUC_1981_22_4_a3
Hájek, Petr. On interpretability in theories containing arithmetic. II. Commentationes Mathematicae Universitatis Carolinae, Tome 22 (1981) no. 4, pp. 667-688. http://geodesic.mathdoc.fr/item/CMUC_1981_22_4_a3/

[1] S. FEFERMAN: Arithmetization of metamathematics in a general setting. Fund. Math. 49 (1960), 33-92. | MR | Zbl

[2] K. GÖDEL: The consistency of the axiom of choice etc. Princeton Univ. Press 1940.

[3] D. GUASPARI: Partially conservative extensions of arithmetic. Trans. Amer. Math. Soc. 254 (1979), 47-68. | MR | Zbl

[4] D. GUASPARI R. SOLOVAY: Rosser sentences. Annals of Math. Log. 16 (1979), 81-99. | MR

[5] P. HÁJEK: On interpretability in set theories. Comment. Math. Univ. Carolinae 12 (1971), 73-79. | MR

[6] P. HÁJEK: On interpretability in set theories II. Comment. Math. Univ. Carolinae 13 (1972), 445-455. | MR

[7] M. HÁJKOVÁ P. HÁJEK: On interpretabillty in theories containing arithmetic. Fund. Math. 76 (1972), 131-137. | MR

[8] P. LINDSTRÖM: Some results on interpretability. Proc. 5th Scand. Log. Symp. Aalborg Univ. Press 1979. | MR

[9] J. R. SHOENFIELD: Mathematical logic. Addison-Wesley 1967. | MR | Zbl

[10] C. SMORYŃSKI: Fifty years of self-reference in arithmetic. to appear. | MR

[11] C. SMORYŃSKI: A ubiquitous fixed-point calculation. to appear.

[12] C. SMORYŃSKI: Calculating self-referential statements: Guaspari sentences of first kind. to appear.

[13] C. SMORYŃSKI: A short course in modal logic. handwritten notes.

[14] R. SOLOVAY: Interpretability in set theories. in preparation.

[15] R. SOLOVAY: Probability interpretations of modal logic. Israel J. of Math. 25 (1976), 287-304. | MR

[16] V. ŠVEJDAR: Degrees of interpretability. Comment. Math. Univ. Carolinae 19 (1978), 789-813. | MR

[17] A. TARSKI A. MOSTOWSKI R. M. ROBINSON: Undecidable theories. Horth-Holland Publ. Co. 1953. | MR

[18] P. VOPĚNKA P. HÁJEK: Existence of a generalized model of Gödel-Bernays set theory. Bull. Acad. Polon. Sci. 21 (1973), 1079-1086. | MR