@article{CMUC_1981_22_4_a12,
author = {Cornish, William H.},
title = {A ternary variety generated by lattices},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {773--784},
year = {1981},
volume = {22},
number = {4},
mrnumber = {647025},
zbl = {0487.08009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1981_22_4_a12/}
}
Cornish, William H. A ternary variety generated by lattices. Commentationes Mathematicae Universitatis Carolinae, Tome 22 (1981) no. 4, pp. 773-784. http://geodesic.mathdoc.fr/item/CMUC_1981_22_4_a12/
[1] K. A. BAKER: Congruence-distributive polynomial reducts of lattices. Algebra Univ. 9 (1979), 142-145. | MR | Zbl
[2] J. BERMAN: A proof of Lyndon's finite basis theorem. Discrete Math. 29 (1980), 229-233. | MR | Zbl
[3] W. H. CORNISH: A multiplier approach to implicative BCK-algebras. Math. Seminar Notes Kobe Univ. 8 (1980), 157-169. | MR | Zbl
[4] W. H. CORNISH: $3$-permutability and quasi commutative BCK-algebras. Math. Japonica 25 (1980), 477-496. | MR
[5] W. H. CORNISH: On Iséki's BCK-algebras. to appear as Chapter 9 in Algebraic Structures and Applications, Marcel-Dekker, 1981.
[6] W. H. CORNISH R. C. HICKMAN: Weakly distributive semilattices. Acta Sci. Math. Hungar. 32 (1978), 5-16. | MR
[7] R. HICKMAN: Join algebras. Commun. in Alg. 8 (1980), 1653-1685. | MR | Zbl
[8] R. C. LYNDON: Identities in two-valued calculi. Trans. Amer. Math. Soc. 71(1951), 457-465. | MR | Zbl
[9] R. PADMANABHAN E. W. QUACKENBUSH: Equational theories of algebras with distributive congruences. Proc. Amer. Math. Soc. 41 (1973), 373-377. | MR