A ternary variety generated by lattices
Commentationes Mathematicae Universitatis Carolinae, Tome 22 (1981) no. 4, pp. 773-784 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 03C05, 06A12, 06B99, 06D99, 08B05, 08B10, 08B15, 08B99
@article{CMUC_1981_22_4_a12,
     author = {Cornish, William H.},
     title = {A ternary variety generated by lattices},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {773--784},
     year = {1981},
     volume = {22},
     number = {4},
     mrnumber = {647025},
     zbl = {0487.08009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1981_22_4_a12/}
}
TY  - JOUR
AU  - Cornish, William H.
TI  - A ternary variety generated by lattices
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1981
SP  - 773
EP  - 784
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1981_22_4_a12/
LA  - en
ID  - CMUC_1981_22_4_a12
ER  - 
%0 Journal Article
%A Cornish, William H.
%T A ternary variety generated by lattices
%J Commentationes Mathematicae Universitatis Carolinae
%D 1981
%P 773-784
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1981_22_4_a12/
%G en
%F CMUC_1981_22_4_a12
Cornish, William H. A ternary variety generated by lattices. Commentationes Mathematicae Universitatis Carolinae, Tome 22 (1981) no. 4, pp. 773-784. http://geodesic.mathdoc.fr/item/CMUC_1981_22_4_a12/

[1] K. A. BAKER: Congruence-distributive polynomial reducts of lattices. Algebra Univ. 9 (1979), 142-145. | MR | Zbl

[2] J. BERMAN: A proof of Lyndon's finite basis theorem. Discrete Math. 29 (1980), 229-233. | MR | Zbl

[3] W. H. CORNISH: A multiplier approach to implicative BCK-algebras. Math. Seminar Notes Kobe Univ. 8 (1980), 157-169. | MR | Zbl

[4] W. H. CORNISH: $3$-permutability and quasi commutative BCK-algebras. Math. Japonica 25 (1980), 477-496. | MR

[5] W. H. CORNISH: On Iséki's BCK-algebras. to appear as Chapter 9 in Algebraic Structures and Applications, Marcel-Dekker, 1981.

[6] W. H. CORNISH R. C. HICKMAN: Weakly distributive semilattices. Acta Sci. Math. Hungar. 32 (1978), 5-16. | MR

[7] R. HICKMAN: Join algebras. Commun. in Alg. 8 (1980), 1653-1685. | MR | Zbl

[8] R. C. LYNDON: Identities in two-valued calculi. Trans. Amer. Math. Soc. 71(1951), 457-465. | MR | Zbl

[9] R. PADMANABHAN E. W. QUACKENBUSH: Equational theories of algebras with distributive congruences. Proc. Amer. Math. Soc. 41 (1973), 373-377. | MR