The complexity of $\sigma$-discretely decomposable families in uniform spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 22 (1981) no. 2, pp. 317-326 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 54E15, 54H05
@article{CMUC_1981_22_2_a9,
     author = {Pelant, Jan and Pt\'ak, Pavel},
     title = {The complexity of $\sigma$-discretely decomposable families in uniform spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {317--326},
     year = {1981},
     volume = {22},
     number = {2},
     mrnumber = {620367},
     zbl = {0488.54014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1981_22_2_a9/}
}
TY  - JOUR
AU  - Pelant, Jan
AU  - Pták, Pavel
TI  - The complexity of $\sigma$-discretely decomposable families in uniform spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1981
SP  - 317
EP  - 326
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1981_22_2_a9/
LA  - en
ID  - CMUC_1981_22_2_a9
ER  - 
%0 Journal Article
%A Pelant, Jan
%A Pták, Pavel
%T The complexity of $\sigma$-discretely decomposable families in uniform spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1981
%P 317-326
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1981_22_2_a9/
%G en
%F CMUC_1981_22_2_a9
Pelant, Jan; Pták, Pavel. The complexity of $\sigma$-discretely decomposable families in uniform spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 22 (1981) no. 2, pp. 317-326. http://geodesic.mathdoc.fr/item/CMUC_1981_22_2_a9/

[C] E. ČECH: Topological spaces. Academia (Academic Press), Prague 1965.

[F1] Z. FROLÍK: Basic refinements of uniform spaces. Proc. 2nd Topological Conference in Pittsburgh. Lect. Notes 378 (1972), 140-158. | MR

[F2] Z. FROLÍK: Analytic and borelian sets in general spaces. Proc. London Math. Soc. XXI (1970), 674-692. | MR

[FH1] Z. FROLÍK P. HOLICKÝ: Analytic and Luzin spaces (non-separable case). submitted to Topology and its application.

[FH2] Z. FROLÍK P. HOLICKÝ: Applications of Luzinian separation principles (non-separable case). to appear in Fund. Math. | MR

[FH3] Z. FROLÍK P. HOLICKÝ: On the non-separable descriptive theory. Fifth Winťer School on abstract analysis, Math. Inst. Czech. Academy of Sci., Prague 1977.

[H1] R. W. HANSELL: On the nonseparable theory of $k$-Borel and $k$-Souslin sets. Gen. Top. Appl. 3 (1973), 161- | MR

[H2] R. W. HANSELL: Borel measurable mappings for non-separable metric spases. Trans. Amer. Math. Soc. 161 (1971), 145-159. | MR

[Ho] P. HOLICKÝ: Non-separable analytic spaces. (Czech), CSc. thesis, Charles Uhiversity 1977.

[KP] J. KANIEWSKI R. POL: Borel-measurable selectors for compact-valued mappings in the non-separable case. Bull. Acad. Polon. Sci. 23 (1975), 1043-1050. | MR

[PP] J. PELANT P. PTÁK: On -discreteness in uniform spaces. Seminar Uniform Spaces (directed by Z. Frolík), Math. Inst. Czech. Acad. of Sci. 1977, 115-120.