On the differentiability of multivalued mappings. I
Commentationes Mathematicae Universitatis Carolinae, Tome 22 (1981) no. 2, pp. 267-280 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 26E25, 36A05, 46G05, 47H99, 49A51, 58C05, 58C20
@article{CMUC_1981_22_2_a4,
     author = {Le Van Hot},
     title = {On the differentiability of multivalued mappings. {I}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {267--280},
     year = {1981},
     volume = {22},
     number = {2},
     mrnumber = {620362},
     zbl = {0465.47042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1981_22_2_a4/}
}
TY  - JOUR
AU  - Le Van Hot
TI  - On the differentiability of multivalued mappings. I
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1981
SP  - 267
EP  - 280
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1981_22_2_a4/
LA  - en
ID  - CMUC_1981_22_2_a4
ER  - 
%0 Journal Article
%A Le Van Hot
%T On the differentiability of multivalued mappings. I
%J Commentationes Mathematicae Universitatis Carolinae
%D 1981
%P 267-280
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1981_22_2_a4/
%G en
%F CMUC_1981_22_2_a4
Le Van Hot. On the differentiability of multivalued mappings. I. Commentationes Mathematicae Universitatis Carolinae, Tome 22 (1981) no. 2, pp. 267-280. http://geodesic.mathdoc.fr/item/CMUC_1981_22_2_a4/

[1] V. I. AVERBUTH O. G. SMOLYANOV: The Theory of differentiation in linear topological spaces. Russian Math. Survey 22:6 (1967), 201-258. | MR

[2] H. T. BANKS M. Q. JACOBS: A differential calcul for multi-functions. J. Math. Anal. Appl. 29 (1970), 246-272. | MR

[3] F. S. DE BLASI: On the differentiability of multifunctions. Pacific J. Math. 66 (1976), 67-81. | MR | Zbl

[4] C. GODET-THOBIE M. PHAM THE LAI: Sur le plongement de l'ensemble de convex espace vectoriel topologique localement convex. C.R. Aacd. Sci. Paris (1970), 84-87.

[5] LE VAN HOT: On the embedding theorem. Comment. Math. Univ. Carolinae 21 (1980), 777-794. | MR | Zbl

[6] H. RADSTROM: An embedding theorem for spaces of convex sets. Proc. Amer. Math. Soc. 3 (1952), 165-169. | MR

[7] H. SHAFFER: Topological vector spaces. The Mac Millan Co., New York.

[8] S. YAMAMURO: Differential calculus in topological linear spaces. Lecture Notes in Math., Vol. 374, Springer-Verlag 1974. | MR | Zbl