@article{CMUC_1981_22_1_a7,
author = {Rzepecki, Bogdan},
title = {Some fixed point theorems in locally convex spaces and applications to differential and integral equations},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {113--127},
year = {1981},
volume = {22},
number = {1},
mrnumber = {609939},
zbl = {0461.47028},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1981_22_1_a7/}
}
TY - JOUR AU - Rzepecki, Bogdan TI - Some fixed point theorems in locally convex spaces and applications to differential and integral equations JO - Commentationes Mathematicae Universitatis Carolinae PY - 1981 SP - 113 EP - 127 VL - 22 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMUC_1981_22_1_a7/ LA - en ID - CMUC_1981_22_1_a7 ER -
%0 Journal Article %A Rzepecki, Bogdan %T Some fixed point theorems in locally convex spaces and applications to differential and integral equations %J Commentationes Mathematicae Universitatis Carolinae %D 1981 %P 113-127 %V 22 %N 1 %U http://geodesic.mathdoc.fr/item/CMUC_1981_22_1_a7/ %G en %F CMUC_1981_22_1_a7
Rzepecki, Bogdan. Some fixed point theorems in locally convex spaces and applications to differential and integral equations. Commentationes Mathematicae Universitatis Carolinae, Tome 22 (1981) no. 1, pp. 113-127. http://geodesic.mathdoc.fr/item/CMUC_1981_22_1_a7/
[1] A. BIELECKI: Une remarque sur la méthode de Banach-Cacciopoli-Tikhonov dans la théorie des équations différentielles ordinaires. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 4 (1956), 261-264. | MR
[2] F. F. BONSALL: Lectures on some fixed point theorems of functional analysis. Tata Institute of Fundamental Research, Bombay 1962. | MR
[3] N. BOURBAKI: Espaces vectoriels topologiques. Paris 1953. | Zbl
[4] G. L. CAIN, Jr. M. Z. NASHED: Fixed points and stability for a sum of two operators in locally convex spaces. Pacific J. Math. 39 (1971), 581-592. | MR
[5] R. EDWARDS: Functional analysis. Theory and applications, New York 1965. | MR | Zbl
[6] C. J. HIMMELBERG:. : Fixed points of compact multifunctions. J. Math. Anal. Appl. 38 (1972), 205-207. | MR | Zbl
[7] H. H. KELLER: Differential calculus in locally convex spaces. Springer-Verlag, Lecture Notes in Mathematics, Berlin 1974. | MR | Zbl
[8] M. A. KRASNOSELSKII: Two remarks on the method of succesive approximations. [in Russian], Uspehi Mat. Nauk 10 (1955), 123-127. | MR
[9] S. G. KREIN: Linear differential equations in a Banach space. [in Russian], Moscow 1967. | MR
[10] C. KURATOWSKI: Topologie v. I. Warsaw 1952.
[11] W. R. MELVTN: Some extensions of the Krasnoselskii fixed point theorems. J. Diff. Equat. 11 (1972), 335-348. | MR
[12] V. MILLIONCHIKOV: A contribution to the theory of differential equations $dx/dt = f(x,t)$ in locally convex space. [in Russian], DAN SSSR 131 (1960), 510-513. | MR
[13] M. A. NAIMARK: Normed rings. [in Russian], Moscow 1968. | MR
[14] M. Z. NASHED J. S. W. WONG: Some variants of a fixed point of Krasnoselskii and applications to non-linear integral equations. J. Math. Mech. 18 (1969), 767-777. | MR
[15] W. A. PETRYSHYN: A new fixed point theorem and its applications. Bull. Amer. Math. Soc. 2 (1972), 225-229.
[16] D. PRZEWORSKA, ROLEWICZ: Equations with transformed argument. An algebraic approach. Warsaw 1973. | MR | Zbl
[17] B. RZEPECKI: On the Banach principle and its application to theory of differential equations. Comment. Math. 19 (1977), 355-363. | MR
[18] V. M. SEHGAL S. P. SINGH: On a fixed point theorem of Krasnoselskii for locally convex spaces. Pacific J. Math. 62 (1976), 561-567. | MR
[19] V. M. SEHGAL S. P. SINGH: A fixed point theorem for the sum of two mappings. Math. Japonica 23 (1978), 71-75. | MR
[20] K. YOSIDA: Functional analysis. Berlin 1965. | MR | Zbl