@article{CMUC_1981_22_1_a3,
author = {Tarafdar, Enayat},
title = {On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. {II}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {37--58},
year = {1981},
volume = {22},
number = {1},
mrnumber = {609935},
zbl = {0461.47034},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1981_22_1_a3/}
}
TY - JOUR AU - Tarafdar, Enayat TI - On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. II JO - Commentationes Mathematicae Universitatis Carolinae PY - 1981 SP - 37 EP - 58 VL - 22 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMUC_1981_22_1_a3/ LA - en ID - CMUC_1981_22_1_a3 ER -
%0 Journal Article %A Tarafdar, Enayat %T On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. II %J Commentationes Mathematicae Universitatis Carolinae %D 1981 %P 37-58 %V 22 %N 1 %U http://geodesic.mathdoc.fr/item/CMUC_1981_22_1_a3/ %G en %F CMUC_1981_22_1_a3
Tarafdar, Enayat. On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. II. Commentationes Mathematicae Universitatis Carolinae, Tome 22 (1981) no. 1, pp. 37-58. http://geodesic.mathdoc.fr/item/CMUC_1981_22_1_a3/
[1] BROWDER F. E., PETRYSHYN W. V.: Approximation methods and the generalized topological degree for nonlinear mappings in Banach spaces. J. Functional Anal. 39 (1968), 217-245. | MR
[2] BROWDER F. E., PETRYSHYN W. V.: The topological degree and the Galerkin approximations for non-compact operator in Banach spaces. Bull. Amer. Math. Soc. 74 (1968), 641-646. | MR
[3] FITZPATRICK P. M.: A generalized degree for uniform limits of $A$-proper mappings. J. Math. Anal. Appl. 35 (1971), 536-552. | MR | Zbl
[4] GAINES R. E., MAWHIN J. L.: Coincidence degree and non-linear differential equations. Lecture Notes in Mathematics, No. 568 (Edited by Dold A. and Eckmann B.) Springer-Verlag (1977). | MR
[5] GOLDENSTEIN L. S., GOHBERG I. Ts, MARKUS A. S.: Investigation of some properties of bounded linear opeгators in connection with their $q$-norm. Uch. Zap. Kishinev, Gos. Univ. 29 (1957), 29-36.
[6] HETZER G.: Some remarks on $\phi_+$ opeгators and on the coincidence degree for Fгedholm equation with non-compact nonlineaг perturbation. Ann. Soc. Sci. Bruxelles Ser. I 89 (1975), 497-508. | MR
[7] KRASNOSEL'SKII M. A.: Some problems of nonlinear analysis. Amer. Math. Soc. Transl. (2) 10 (1958), 345-409. | MR
[8] KURATOWSKI C.: Sur les espaces complets. Fund. Math. 15 (1930), 301-309.
[9] MAWHIN J.: Equivalence Theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces. J. Differential Equations 12 (1972), 610-636. | MR | Zbl
[10] NUSSBAUM R. D.: The fixed point index for local condensing maps. An. Mat. pura Appl. (4) 89 (1971), 217-258. | MR | Zbl
[11] NUSSBAUM R. D.: Degree theory for local condensing maps. J. Math. Anal. Appl. 37 (1972), 741-766. | MR | Zbl
[12] TARAFDAR E.: On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory I. Comment. Math. Univ. Carolinae 21 (1980), 805-823. | MR | Zbl
[13] VAINIKKO G. M., SADOVSKII B. N.: On the rotation of condensing vector fields. (Russian), Probl. Matem., Analiza Slozhn. Sist. No. 2, Voronezh (1968), 84-88. | MR