On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. II
Commentationes Mathematicae Universitatis Carolinae, Tome 22 (1981) no. 1, pp. 37-58 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 47A50, 47A53, 47A55, 47H10, 47H15, 47J05
@article{CMUC_1981_22_1_a3,
     author = {Tarafdar, Enayat},
     title = {On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. {II}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {37--58},
     year = {1981},
     volume = {22},
     number = {1},
     mrnumber = {609935},
     zbl = {0461.47034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1981_22_1_a3/}
}
TY  - JOUR
AU  - Tarafdar, Enayat
TI  - On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. II
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1981
SP  - 37
EP  - 58
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1981_22_1_a3/
LA  - en
ID  - CMUC_1981_22_1_a3
ER  - 
%0 Journal Article
%A Tarafdar, Enayat
%T On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. II
%J Commentationes Mathematicae Universitatis Carolinae
%D 1981
%P 37-58
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1981_22_1_a3/
%G en
%F CMUC_1981_22_1_a3
Tarafdar, Enayat. On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. II. Commentationes Mathematicae Universitatis Carolinae, Tome 22 (1981) no. 1, pp. 37-58. http://geodesic.mathdoc.fr/item/CMUC_1981_22_1_a3/

[1] BROWDER F. E., PETRYSHYN W. V.: Approximation methods and the generalized topological degree for nonlinear mappings in Banach spaces. J. Functional Anal. 39 (1968), 217-245. | MR

[2] BROWDER F. E., PETRYSHYN W. V.: The topological degree and the Galerkin approximations for non-compact operator in Banach spaces. Bull. Amer. Math. Soc. 74 (1968), 641-646. | MR

[3] FITZPATRICK P. M.: A generalized degree for uniform limits of $A$-proper mappings. J. Math. Anal. Appl. 35 (1971), 536-552. | MR | Zbl

[4] GAINES R. E., MAWHIN J. L.: Coincidence degree and non-linear differential equations. Lecture Notes in Mathematics, No. 568 (Edited by Dold A. and Eckmann B.) Springer-Verlag (1977). | MR

[5] GOLDENSTEIN L. S., GOHBERG I. Ts, MARKUS A. S.: Investigation of some properties of bounded linear opeгators in connection with their $q$-norm. Uch. Zap. Kishinev, Gos. Univ. 29 (1957), 29-36.

[6] HETZER G.: Some remarks on $\phi_+$ opeгators and on the coincidence degree for Fгedholm equation with non-compact nonlineaг perturbation. Ann. Soc. Sci. Bruxelles Ser. I 89 (1975), 497-508. | MR

[7] KRASNOSEL'SKII M. A.: Some problems of nonlinear analysis. Amer. Math. Soc. Transl. (2) 10 (1958), 345-409. | MR

[8] KURATOWSKI C.: Sur les espaces complets. Fund. Math. 15 (1930), 301-309.

[9] MAWHIN J.: Equivalence Theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces. J. Differential Equations 12 (1972), 610-636. | MR | Zbl

[10] NUSSBAUM R. D.: The fixed point index for local condensing maps. An. Mat. pura Appl. (4) 89 (1971), 217-258. | MR | Zbl

[11] NUSSBAUM R. D.: Degree theory for local condensing maps. J. Math. Anal. Appl. 37 (1972), 741-766. | MR | Zbl

[12] TARAFDAR E.: On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory I. Comment. Math. Univ. Carolinae 21 (1980), 805-823. | MR | Zbl

[13] VAINIKKO G. M., SADOVSKII B. N.: On the rotation of condensing vector fields. (Russian), Probl. Matem., Analiza Slozhn. Sist. No. 2, Voronezh (1968), 84-88. | MR