On the symmetry of Dini derivates of arbitrary functions
Commentationes Mathematicae Universitatis Carolinae, Tome 22 (1981) no. 1, pp. 195-209 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 26A24, 26A27, 26B35
@article{CMUC_1981_22_1_a15,
     author = {Zaj{\'\i}\v{c}ek, Lud\v{e}k},
     title = {On the symmetry of {Dini} derivates of arbitrary functions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {195--209},
     year = {1981},
     volume = {22},
     number = {1},
     mrnumber = {609947},
     zbl = {0462.26003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1981_22_1_a15/}
}
TY  - JOUR
AU  - Zajíček, Luděk
TI  - On the symmetry of Dini derivates of arbitrary functions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1981
SP  - 195
EP  - 209
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1981_22_1_a15/
LA  - en
ID  - CMUC_1981_22_1_a15
ER  - 
%0 Journal Article
%A Zajíček, Luděk
%T On the symmetry of Dini derivates of arbitrary functions
%J Commentationes Mathematicae Universitatis Carolinae
%D 1981
%P 195-209
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1981_22_1_a15/
%G en
%F CMUC_1981_22_1_a15
Zajíček, Luděk. On the symmetry of Dini derivates of arbitrary functions. Commentationes Mathematicae Universitatis Carolinae, Tome 22 (1981) no. 1, pp. 195-209. http://geodesic.mathdoc.fr/item/CMUC_1981_22_1_a15/

[1] C. L. BELNA M. J. EVANS P. D. HUMKE: Most directional cluster sets have common values. Fund. Math. 101 (1978), 1-10. | MR

[2] H. BLUMBERG: A theorem on arbitrary functions of two variables with applications. Fund. Math. 16 (1930), 17-24.

[3] A. M. BRUCKNER: Differentiation of real functions. Lecture notes in Mathematics, No. 659, Springer Verlag, 1978. | MR | Zbl

[4] A. M. BRUCKNER C. GOFFMAN: The boundary behaviour of real functions in the upper half plane. Rev. Roumaine Math. Pures Appl. 11 (1966), 507-518. | MR

[5] E. P. DOLŽENKO: The boundary properties of arbitrary functions. Russian, Izv. Akad. Nauk SSSR, Ser. Mat. 31 (1967), 3-14. | MR

[6] M. J. EVANS P. D. HUMKE: Directional cluster sets ana essential directional cluster sets of real functions defined in the upper half plane. Rev. Roumaine Math. Pures Appl. 23 (1978), 533-542. | MR

[7] V. JARNÍK: Sur les fonctions de la première classe de Baire. Bull. Internat. Acad. Sci. Boheme 1926.

[8] V. JARNÍK: Sur les fonctions de deux variables reélies. Fund. Math. 27 (1936), 147-150.

[9] J. LUKEŠ L. ZAJÍČEK: When finely continuous functions are of the first class of Baire. Comment. Math. Univ. Carolinae 18 (1977), 647-657. | MR

[10] F. MIGNOT: Controle dans les inéquations variationelles elliptiques. J. Functional Analysis 22 (1976), 130-185. | MR | Zbl

[11] C. NEUGEBAUER: A theorem on derivatives. Acta Sci. Math. Szeged, 23 (1962), 79-81. | MR | Zbl

[12] S. SAKS: Theory of the Integral. New York, 1937. | Zbl

[13] L. ZAJÍČEK: On cluster sets of arbitrary functions. Fund. Math. 83 (1974), 197-217. | MR

[14] L. ZAJÍČEK: Sets of $\sigma $ -porosity and sets of $\sigma $ -porosity $(q)$. Časopis pěst. mat. 101 (1976), 350-359. | MR | Zbl