There is no universal separable Fréchet or sequential compact space
Commentationes Mathematicae Universitatis Carolinae, Tome 22 (1981) no. 1, pp. 161-168
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1981_22_1_a12,
author = {Bashkirov, Aleksandr I.},
title = {There is no universal separable {Fr\'echet} or sequential compact space},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {161--168},
year = {1981},
volume = {22},
number = {1},
mrnumber = {609944},
zbl = {0478.54021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1981_22_1_a12/}
}
TY - JOUR AU - Bashkirov, Aleksandr I. TI - There is no universal separable Fréchet or sequential compact space JO - Commentationes Mathematicae Universitatis Carolinae PY - 1981 SP - 161 EP - 168 VL - 22 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMUC_1981_22_1_a12/ LA - en ID - CMUC_1981_22_1_a12 ER -
Bashkirov, Aleksandr I. There is no universal separable Fréchet or sequential compact space. Commentationes Mathematicae Universitatis Carolinae, Tome 22 (1981) no. 1, pp. 161-168. http://geodesic.mathdoc.fr/item/CMUC_1981_22_1_a12/
[11 A. I. BASHKIROV: On continuous maps of Isbell spaces and strong $0$-dimensionality. Bull. Pol. Acad. Sci. 27, 7 (1979), 605-611. | MR
[2] A. I. BASHKIROV: On Fréchet compactifications of discrete spaces. ibid. (to appear). | MR | Zbl
[3] R. ENGEIKING: General Topology. Warszawa, 1977.
[4] S. P. FRANKLIN: Spaces in which sequences suffice, II. Fund. Math. 61 (1967), 51-56. | MR | Zbl
[5] S. MRÓWKA: On completely regular spaces. ibid. 41 (1954), 105-106. | MR