On simultaneous integrability of two commuting almost tangent structures
Commentationes Mathematicae Universitatis Carolinae, Tome 22 (1981) no. 1, pp. 149-160 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 53C10
@article{CMUC_1981_22_1_a11,
     author = {Kub\'at, V\'aclav},
     title = {On simultaneous integrability of two commuting almost tangent structures},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {149--160},
     year = {1981},
     volume = {22},
     number = {1},
     mrnumber = {609943},
     zbl = {0456.53021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1981_22_1_a11/}
}
TY  - JOUR
AU  - Kubát, Václav
TI  - On simultaneous integrability of two commuting almost tangent structures
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1981
SP  - 149
EP  - 160
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1981_22_1_a11/
LA  - en
ID  - CMUC_1981_22_1_a11
ER  - 
%0 Journal Article
%A Kubát, Václav
%T On simultaneous integrability of two commuting almost tangent structures
%J Commentationes Mathematicae Universitatis Carolinae
%D 1981
%P 149-160
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1981_22_1_a11/
%G en
%F CMUC_1981_22_1_a11
Kubát, Václav. On simultaneous integrability of two commuting almost tangent structures. Commentationes Mathematicae Universitatis Carolinae, Tome 22 (1981) no. 1, pp. 149-160. http://geodesic.mathdoc.fr/item/CMUC_1981_22_1_a11/

[1] J. VANŽURA: Simultaneous integrability of an almost tangent structure and a distribution. preprint. | MR

[2] J. LEHMANN, LEJEUNE: Intégrabilité des $G$-structures définies par une $1$-forme $0$-déformable a valeurs dans le fibre tangent. Ann. Inst. Fourier, Grenoble 16, 2 (1966), 329-387. | MR | Zbl

[3] Ch.-Sh. HOUH: The integrability of a structure on a differentiable manifold. Tôhoku Math. J. 1965, 17, 72-75. | MR | Zbl

[4] Y. HATAKEYAMA: On the integrability of a structure defined by two semisimple $0$-deformable vector $1$-forms which commute with each other. Tôhoku Math. J. 1965, 17, No. 2, 171-177. | MR

[5] Ch. HSU C.-S. HOUH: Note on the integrability conditions of $(\varphi, \psi)$ structures. Tôhoku Math. J. 1966, 18, No. 4, 368-377. | MR

[6] C.-S. HOUH: Hung-Ching Chow Sixty-Fifth Anniversary Volume. Math. Research Center Nat. Taiwan Univ., dec. 1967. | MR

[7] Sh. HASHIMOTO: On the differentiable manifold admitting tensor fields $(F,G)$ of type $(1,1)$ satisfying $F^3 + F = 0, G^3 + G = 0, FG = - GF, F^2 = G^2$. Tensor 1964, 15, No. 3, 269-274. | MR

[8] V. KUBÁT: Simultaneous integrability of two $J$-related almost tangent structures. Comment. Math. Univ. Carolinae 20 (1979), 461-473. | MR

[9] J. BUREŠ J. VANŽURA: A Nijennuis-type tensor on the quotient of a distribution. Comment. Math. Univ. Carolinae 21 (1980), 201-208. | MR

[10] J. BUREŠ J. VANŽURA: Simultaneous integrability of analmost complex and an almost tangent structure. Czech. Math. Journal (in print).