Integral representation of $n$-variable positive real functions
Commentationes Mathematicae Universitatis Carolinae, Tome 21 (1980) no. 4, pp. 707-717
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1980_21_4_a6,
author = {Gregor, Ji\v{r}{\'\i}},
title = {Integral representation of $n$-variable positive real functions},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {707--717},
year = {1980},
volume = {21},
number = {4},
mrnumber = {597760},
zbl = {0458.32001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1980_21_4_a6/}
}
Gregor, Jiří. Integral representation of $n$-variable positive real functions. Commentationes Mathematicae Universitatis Carolinae, Tome 21 (1980) no. 4, pp. 707-717. http://geodesic.mathdoc.fr/item/CMUC_1980_21_4_a6/
[1] AJZENBERG L. A., JEGORYČEV G. P.: Intěgralnyje predstavlenija s jadrami Szegö dlja funkcij golomorfnych v neograničennych n-krugovych oblastjach. Dokl. AN SSSR, Tom 231 (1976), No. 2, 265-268. | MR
[2] GREOOR J.: On integral representation of multivariable positive real functions. Proc. of the $VI^{th}$ Coll. on Microware Comm., Budapest 1978, 11-4/23.1 - 11-4/ 23.4.
[3] KORÁNYI A., PUKÁNSZKY L.: Holomorphic functions with positive real part on poly cylinders. Trans. Amer. Math, Soc. 108, No. 3 (1963), 449-456. | MR
[4] LOЀVE M.: Probability Theory. (Russian edition: Teorija věrojatnostěj, IIL, Moskva 1962).
[5] ZYGMUND A.: Trigonometric Series. Univ. Press, Cambridge, 1959. | MR | Zbl