Does ${\bf SP}\ K\supseteq\ {\bf PS}\ K$ imply axiom of choice?
Commentationes Mathematicae Universitatis Carolinae, Tome 21 (1980) no. 4, pp. 699-706
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1980_21_4_a5,
author = {Andr\'eka, H. and N\'emeti, I.},
title = {Does ${\bf SP}\ K\supseteq\ {\bf PS}\ K$ imply axiom of choice?},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {699--706},
year = {1980},
volume = {21},
number = {4},
mrnumber = {597759},
zbl = {0453.04003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1980_21_4_a5/}
}
TY - JOUR
AU - Andréka, H.
AU - Németi, I.
TI - Does ${\bf SP}\ K\supseteq\ {\bf PS}\ K$ imply axiom of choice?
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1980
SP - 699
EP - 706
VL - 21
IS - 4
UR - http://geodesic.mathdoc.fr/item/CMUC_1980_21_4_a5/
LA - en
ID - CMUC_1980_21_4_a5
ER -
Andréka, H.; Németi, I. Does ${\bf SP}\ K\supseteq\ {\bf PS}\ K$ imply axiom of choice?. Commentationes Mathematicae Universitatis Carolinae, Tome 21 (1980) no. 4, pp. 699-706. http://geodesic.mathdoc.fr/item/CMUC_1980_21_4_a5/
[1] ANDRÉKA H., BURMEISTER P., NÉMETI I.: Quasivarieties of Partial Algebras (Toward a unified model theory for Partial Algebras). Preprint Technische Hochschule Darmstadt, 1980, | MR
[2] GRÄTZER G.: Universal Algebra. Second Edition, Springer Verlag, 1979. | MR
[3] HENKIN L., MONK J. D., TARSKI A.: Cylindric Algebras. Part I, North Holland, 1971. | MR | Zbl
[4] LEVY A.: Basic Set Theory. Springer Verlag 1979. | MR | Zbl
[5] NÉMETI I.: Operators on Classes of Algebras and the Axiom of Choice. Mathematical Institute of Hung. Acad. Sci., Preprint, June 1980.
[6] PIGOZZI D.: On some operations on classes of algebras. Algebra Universalis 2 (1972), 346-353. | MR | Zbl