On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. I
Commentationes Mathematicae Universitatis Carolinae, Tome 21 (1980) no. 4, pp. 805-823
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 47A50, 47A55, 47H10, 47H15, 47J05
@article{CMUC_1980_21_4_a15,
     author = {Tarafdar, Enayat},
     title = {On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. {I}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {805--823},
     year = {1980},
     volume = {21},
     number = {4},
     mrnumber = {597769},
     zbl = {0463.47046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1980_21_4_a15/}
}
TY  - JOUR
AU  - Tarafdar, Enayat
TI  - On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. I
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1980
SP  - 805
EP  - 823
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1980_21_4_a15/
LA  - en
ID  - CMUC_1980_21_4_a15
ER  - 
%0 Journal Article
%A Tarafdar, Enayat
%T On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. I
%J Commentationes Mathematicae Universitatis Carolinae
%D 1980
%P 805-823
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1980_21_4_a15/
%G en
%F CMUC_1980_21_4_a15
Tarafdar, Enayat. On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. I. Commentationes Mathematicae Universitatis Carolinae, Tome 21 (1980) no. 4, pp. 805-823. http://geodesic.mathdoc.fr/item/CMUC_1980_21_4_a15/

[1] CARADUS S. R.: Perturbation theory for generalized Fredholm operators. Pacific J. Math. 52 (1974), 11-15. | MR | Zbl

[2] CARADUS S. R.: Perturbation theory for generalized Fred-holm operators, II. Transactions Amer. Math. Soc. 62 (1977), 72-76. | MR

[3] DOLPH C. L., MINTY G. J.: On nonlinear integral equations of the Hammerstein type, "Integral Equations". Madison Univ. Press, lilladison, 111 (1964), 99-154. | MR | Zbl

[4] EHRMANN H.: Existenzsätze für die Lösungen gewisser nicht-linear Rand-wertaufgaben. Z. Angew. Math. Mech. 45 (1965), 22-29; Abh. Deutsch. Akad. tfiss. Berlin Kl. | MR

[5] GAINES R. E., MAWHIN J. L.: Coincidence degree and non-linear differential Equations. Lecture Notes in Mathematics, No. 568 (Edited by Dold A. and Eckmann B.), Springer-Verlag (1977). | MR

[6] HETZER G.: Some remarks on $\phi_+$ operators and on the co-incidence degree for Fredholm equation with non-compact nonlinear perturbation. Ann. Soc. Sci. Bruxells Ser. I 89 (1975), 497-508. | MR

[7] HETZER G.: Some applications of the coincidence degree for set-contractions to functional differential equations of neutral type. Comment. Math. Univ. Carolinae 16 (1975), 121-138. | MR | Zbl

[8] KELLET J. L., NAMIOKA I.: Linear Topological Spaces. Graduate Texts in Mathematics, 36, Springer-Verlag (1964).

[9] MAWHIN J. : Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locality convex topological vector spaces. J. Differential Equations 12 (1972), 610-636. | MR

[10] TARAFDAR E.: On the existence of the solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory II. Comment. Math. Univ. Carolinae 21 (1980). | MR