@article{CMUC_1980_21_4_a15,
author = {Tarafdar, Enayat},
title = {On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. {I}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {805--823},
year = {1980},
volume = {21},
number = {4},
mrnumber = {597769},
zbl = {0463.47046},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1980_21_4_a15/}
}
TY - JOUR AU - Tarafdar, Enayat TI - On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. I JO - Commentationes Mathematicae Universitatis Carolinae PY - 1980 SP - 805 EP - 823 VL - 21 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMUC_1980_21_4_a15/ LA - en ID - CMUC_1980_21_4_a15 ER -
%0 Journal Article %A Tarafdar, Enayat %T On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. I %J Commentationes Mathematicae Universitatis Carolinae %D 1980 %P 805-823 %V 21 %N 4 %U http://geodesic.mathdoc.fr/item/CMUC_1980_21_4_a15/ %G en %F CMUC_1980_21_4_a15
Tarafdar, Enayat. On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. I. Commentationes Mathematicae Universitatis Carolinae, Tome 21 (1980) no. 4, pp. 805-823. http://geodesic.mathdoc.fr/item/CMUC_1980_21_4_a15/
[1] CARADUS S. R.: Perturbation theory for generalized Fredholm operators. Pacific J. Math. 52 (1974), 11-15. | MR | Zbl
[2] CARADUS S. R.: Perturbation theory for generalized Fred-holm operators, II. Transactions Amer. Math. Soc. 62 (1977), 72-76. | MR
[3] DOLPH C. L., MINTY G. J.: On nonlinear integral equations of the Hammerstein type, "Integral Equations". Madison Univ. Press, lilladison, 111 (1964), 99-154. | MR | Zbl
[4] EHRMANN H.: Existenzsätze für die Lösungen gewisser nicht-linear Rand-wertaufgaben. Z. Angew. Math. Mech. 45 (1965), 22-29; Abh. Deutsch. Akad. tfiss. Berlin Kl. | MR
[5] GAINES R. E., MAWHIN J. L.: Coincidence degree and non-linear differential Equations. Lecture Notes in Mathematics, No. 568 (Edited by Dold A. and Eckmann B.), Springer-Verlag (1977). | MR
[6] HETZER G.: Some remarks on $\phi_+$ operators and on the co-incidence degree for Fredholm equation with non-compact nonlinear perturbation. Ann. Soc. Sci. Bruxells Ser. I 89 (1975), 497-508. | MR
[7] HETZER G.: Some applications of the coincidence degree for set-contractions to functional differential equations of neutral type. Comment. Math. Univ. Carolinae 16 (1975), 121-138. | MR | Zbl
[8] KELLET J. L., NAMIOKA I.: Linear Topological Spaces. Graduate Texts in Mathematics, 36, Springer-Verlag (1964).
[9] MAWHIN J. : Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locality convex topological vector spaces. J. Differential Equations 12 (1972), 610-636. | MR
[10] TARAFDAR E.: On the existence of the solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory II. Comment. Math. Univ. Carolinae 21 (1980). | MR