A compact Fréchet space whose square is not Fréchet
Commentationes Mathematicae Universitatis Carolinae, Tome 21 (1980) no. 4, pp. 749-753
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 04A20, 54D30, 54D55
@article{CMUC_1980_21_4_a10,
     author = {Simon, Petr},
     title = {A compact {Fr\'echet} space whose square is not {Fr\'echet}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {749--753},
     year = {1980},
     volume = {21},
     number = {4},
     mrnumber = {597764},
     zbl = {0466.54022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1980_21_4_a10/}
}
TY  - JOUR
AU  - Simon, Petr
TI  - A compact Fréchet space whose square is not Fréchet
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1980
SP  - 749
EP  - 753
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1980_21_4_a10/
LA  - en
ID  - CMUC_1980_21_4_a10
ER  - 
%0 Journal Article
%A Simon, Petr
%T A compact Fréchet space whose square is not Fréchet
%J Commentationes Mathematicae Universitatis Carolinae
%D 1980
%P 749-753
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1980_21_4_a10/
%G en
%F CMUC_1980_21_4_a10
Simon, Petr. A compact Fréchet space whose square is not Fréchet. Commentationes Mathematicae Universitatis Carolinae, Tome 21 (1980) no. 4, pp. 749-753. http://geodesic.mathdoc.fr/item/CMUC_1980_21_4_a10/

[BR] T. K. BOEHME M. ROSENFELD: An example of two compact Fréchet Hausdorff spaces, whose product is not Fréchet. J. London Math. Soc. 8 (1974), 339-344. | MR

[D] J. DOČKÁLKOVÁ: Almost disjoint refinement of families of subsets of natural and real numbers. (in Czech), Rigorosní práce, ČKD Praha, závod Polovodiče, Praha 1980.

[Ma] V. I. MALYCHIN: O sekvencial'nycn i Freše-Urysona bikompaktach. Vestnik Moskov. Univ. 5 (1976), 42-47. | MR

[Mi] E. MICHAEL: A quintuple quotient quest. Gen. Top. and Appl. 2 (1972), 91-138. | MR | Zbl

[Mt] A. R. D. MATHIAS: Happy families. Ann. Math. Logic 12 (1977) 59-111. | MR | Zbl

[O] R. C. OLSON: Bi-quotient maps, countable bi-sequential spaces and related topics. Gen. Top. and Appl. 4 (1974), 1-28. | MR