On measures of noncompactness in Banach spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 21 (1980) no. 1, pp. 131-143
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34G20, 47H09, 47H10
@article{CMUC_1980_21_1_a9,
     author = {Bana\'s, J\'ozef},
     title = {On measures of noncompactness in {Banach} spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {131--143},
     year = {1980},
     volume = {21},
     number = {1},
     mrnumber = {566245},
     zbl = {0438.47051},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1980_21_1_a9/}
}
TY  - JOUR
AU  - Banaś, Józef
TI  - On measures of noncompactness in Banach spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1980
SP  - 131
EP  - 143
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1980_21_1_a9/
LA  - en
ID  - CMUC_1980_21_1_a9
ER  - 
%0 Journal Article
%A Banaś, Józef
%T On measures of noncompactness in Banach spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1980
%P 131-143
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1980_21_1_a9/
%G en
%F CMUC_1980_21_1_a9
Banaś, Józef. On measures of noncompactness in Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 21 (1980) no. 1, pp. 131-143. http://geodesic.mathdoc.fr/item/CMUC_1980_21_1_a9/

[1] J. BANAŚ: Relative measures of noncompactness in Banach spaces. Ph.D. Thesis, Lublin 1978 (in Polish).

[2] J. BANAŚ K. GOEBEL: Measures of noncompactness in Banach spaces. (preprint). | MR

[3] J. DANEŠ: On densifying and related mappings and their applications in nonlinear functional analysis. Theory of nonlinear operators, Akademie-Verlag, Berlin 1974, 15-56. | MR

[4] J. DANEŠ: Some fixed point theorems in metric and Banach spaces. Comment. Math. Univ. Carolinae 12 (1971), 37-50. | MR

[5] G. DARBO: Punti uniti in transformazioni a condominio non compatto. Rend. Sem. Math. Univ. Padova, 24 (1955), 84-92. | MR

[6] K. GOEBEL: Thickness of sets in metric spaces and its applications to the fixed point theory. Habilit. Thesis, Lublin 1970 (in Polish).

[7] K. GOEBEL W. RZYMOWSKI: An existence theorem for the equation $x' - f(t,x)$ in Banach space. Bull. Acad. Polon. Sci., Ser. Math. Astronom. et Phys., 18, 7 (1970), 367-370. | MR

[8] I. T. GOHBERG L. S. GOLDENŠTEIN A. S. MARKUS: Investigation of some properties of bounded linear operators in connection with their q-norms. Učen. Zap. Kishinev. Un-ta, 29 (1957), 29-36 (in Russian).

[9] R. JANICKA W. KACZOR: On the construction of aome measures of noncompactness. Ann. Univ. Mariae Curie -Skłodovaka, Sectio A (preprint).

[10] K. KURATOWSKI: Sur les espaces complets. Fund. Math. 15 (1930), 301-309.

[11] B. N. SADOVSKIĬ: Limit compact and condensing operators. Russian Math. Surveys, 27 (1972), 86-144. | MR

[12] B. N. SADOVSKIĬ: On a fixed point principle. Funkc. Analiz i ego Přilož. 1 (1967), no. 2, 74-76 (in Russian). | MR