On vector-topological properties of zero-neighbourhoods of topological vector spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 21 (1980) no. 1, pp. 119-129
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 28A20, 46A10, 46A15, 46A19, 46E30, 54C15, 54D05
@article{CMUC_1980_21_1_a8,
     author = {Riedrich, Thomas},
     title = {On vector-topological properties of zero-neighbourhoods of topological vector spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {119--129},
     year = {1980},
     volume = {21},
     number = {1},
     mrnumber = {566244},
     zbl = {0433.46025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1980_21_1_a8/}
}
TY  - JOUR
AU  - Riedrich, Thomas
TI  - On vector-topological properties of zero-neighbourhoods of topological vector spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1980
SP  - 119
EP  - 129
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1980_21_1_a8/
LA  - en
ID  - CMUC_1980_21_1_a8
ER  - 
%0 Journal Article
%A Riedrich, Thomas
%T On vector-topological properties of zero-neighbourhoods of topological vector spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1980
%P 119-129
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1980_21_1_a8/
%G en
%F CMUC_1980_21_1_a8
Riedrich, Thomas. On vector-topological properties of zero-neighbourhoods of topological vector spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 21 (1980) no. 1, pp. 119-129. http://geodesic.mathdoc.fr/item/CMUC_1980_21_1_a8/

[1] BOURBAKI N.: Espaces vectoriels topologiques. Chap. I-II. Act. Sci. Ind. 1189, Hermann, Paris 1953. | MR

[2] IVES R. T.: Semi-convexity and locally bounded spaces. Ph.D. Thesis, Univ. of Washington, Seattle 1957.

[3] KLEE V.: Shrinkable neighbourhoods in Hausdorff linear spaces. Math. Ann. 141 (1960), 281-285. | MR

[4] KLEE V.: Leray-Schauder theory without local convexity. Math. Ann.141 (1960), 286-296. | MR | Zbl

[5] KLEE V.: Connectedness in topological linear spaces. Israel J. of Mathematics 2 (1964), 127-131. | MR | Zbl

[6] KLEE V., BESSAGA C.: Every non-normable Fréchet space is homeomorphic with all of its closed convex bodies. Note added in proof p. 166, Math. Ann. 163 (1966), 161-166. | MR | Zbl

[7] KÖTHE G.: Topologische lineare Räume I. Springer-Verlag Berlin - Göttingen - Heidelberg I960. | MR

[8] LANDSBERG M.: Lineare beschränkte Abbildungen von einem Produkt in einen lokal radial beschränkten Raum und ihre Filter. Math. Ann. 146 (1962), 232-248. | MR | Zbl

[9] LANDSBERG M.: Über die Fixpunkte kompakter Abbildungen. Math. Ann. 154 (1964), 427-431. | MR | Zbl

[10] RIEDRICH T.: Das Birkhoff-Kellogg-Theorem für lokal radial beschränkte Räume. Math. Ann. 166 (1966), 264-276. | MR | Zbl

[11] RIEDRICH T.: Über Existenzsätze für positive Eigenwerte kompakter Abbildungen in topologischen Vektorräumen. Habilitationsschrift (unveröffentlicht), Dresden 1966.

[12] RIEDRICH T.: Vorlesungen über nichtlineare Operatorengleichungen. Teubner-Texte, Leipzig 1976. | MR | Zbl

[13] RIEDRICH T.: Über topologische Eigenschaften von Nullumgebungen topologischer Vektorräume. Wiss. Z. TU Dresden 26 (1977), 671-672. | MR | Zbl