Homeomorphisms of powers of metric spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 21 (1980) no. 1, pp. 41-53
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 54B10, 54D05, 54G15, 54G20
@article{CMUC_1980_21_1_a3,
     author = {Trnkov\'a, V\v{e}ra},
     title = {Homeomorphisms of powers of metric spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {41--53},
     year = {1980},
     volume = {21},
     number = {1},
     mrnumber = {566239},
     zbl = {0442.54008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1980_21_1_a3/}
}
TY  - JOUR
AU  - Trnková, Věra
TI  - Homeomorphisms of powers of metric spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1980
SP  - 41
EP  - 53
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1980_21_1_a3/
LA  - en
ID  - CMUC_1980_21_1_a3
ER  - 
%0 Journal Article
%A Trnková, Věra
%T Homeomorphisms of powers of metric spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1980
%P 41-53
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1980_21_1_a3/
%G en
%F CMUC_1980_21_1_a3
Trnková, Věra. Homeomorphisms of powers of metric spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 21 (1980) no. 1, pp. 41-53. http://geodesic.mathdoc.fr/item/CMUC_1980_21_1_a3/

[1] H. COOK: Continua which admit, only the identity mapping onto non-degenerate subcontinua. Fund. Math. 60 (1967), 241-249. | MR | Zbl

[2] R. H. FOX: On a problem of S. Ulam concerning Cartesian products. Fund. Math. 34 (1947), 278-287. | MR | Zbl

[3] V. TRNKOVÁ: $X^m$ is homeomorphic to $X^n$ iff $m \sim n$ where $\sim $ is a congruence on natural numbers. Fund. Math. 80 (1973), 51-56. | MR

[4] V. TRNKOVÁ: Representation of semigroups by products in a category. J. of Algebra 34 (1975), 191-204. | MR

[5] V. TRNKOVÁ: Proizvěděnija sčotnych prostranstv. Soviet Doklady, to appear.

[6] V. TRNKOVÁ: Categorial aspects are useful for topology. Proc. IV. Prague Top. Symp., Part A, Lect. N. in Math. 609, Springer-Verlag 1977, 211-225. | MR