Higher order nonlinear partial differential equations in unbounded domains of ${\bf R}^n$
Commentationes Mathematicae Universitatis Carolinae, Tome 20 (1979) no. 3, pp. 583-595 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35J60, 35J65, 46E35, 47H05
@article{CMUC_1979_20_3_a14,
     author = {Giachetti, Daniela and Mascolo, Elvira and Schianchi, Rosanna},
     title = {Higher order nonlinear partial differential equations in unbounded domains of ${\bf R}^n$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {583--595},
     year = {1979},
     volume = {20},
     number = {3},
     mrnumber = {550458},
     zbl = {0415.35028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1979_20_3_a14/}
}
TY  - JOUR
AU  - Giachetti, Daniela
AU  - Mascolo, Elvira
AU  - Schianchi, Rosanna
TI  - Higher order nonlinear partial differential equations in unbounded domains of ${\bf R}^n$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1979
SP  - 583
EP  - 595
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1979_20_3_a14/
LA  - en
ID  - CMUC_1979_20_3_a14
ER  - 
%0 Journal Article
%A Giachetti, Daniela
%A Mascolo, Elvira
%A Schianchi, Rosanna
%T Higher order nonlinear partial differential equations in unbounded domains of ${\bf R}^n$
%J Commentationes Mathematicae Universitatis Carolinae
%D 1979
%P 583-595
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1979_20_3_a14/
%G en
%F CMUC_1979_20_3_a14
Giachetti, Daniela; Mascolo, Elvira; Schianchi, Rosanna. Higher order nonlinear partial differential equations in unbounded domains of ${\bf R}^n$. Commentationes Mathematicae Universitatis Carolinae, Tome 20 (1979) no. 3, pp. 583-595. http://geodesic.mathdoc.fr/item/CMUC_1979_20_3_a14/

[1] V. BENCI D. FORTUNATO: Weighted Sobolev spaces and nonlinear Dirichlet problem in unbounded domains. to apper in Annali di Matematica pure e applicata.

[2] V. BENCI D. FORTUNATO: Some compact imbedding theorems for weighted Sobolev spacea. Boll. Un. Math. Ital. 14-B (1976), 832-843. | MR

[3] V. BENCI D. FORTUNATO: Some nonlinear problems with asymptotic conditions. to appear in Nonlinear Analysis theory methods and applications. | MR

[4] M. S. BERGER M. SCHECHTER: Embedding theorems and quasi-linear elliptic boundary value problems for unbounded domains. Trans. of the Amer. Math. Soc. 172, pp. 261-278 (1972). | MR

[5] H. BREZIS: Equations et inéquations nonlinéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier, Grenoble 18, pp. 115-175 (1968). | MR

[6] H. BREZIS G. STAMPACCHIA: Sur la гegularité de la solution d'inéquations elliptiques. Bull. Soc. Math. Fгance 96 (1968). | MR

[7] F. BROWDER: Existence theorems for nonlinear partial differential equations. Proc. of Symposia in pure Math., Global Analysis vol. XVI, pp. 1-60 (1970). | MR | Zbl

[8] D. E. EDMUNDS W. D. EVANS: Elliptic and degenerate-elliptic opeгators in unbounded domains. Ann. Sc. Nor. Sup. Pisa Cl. Sci. 27 (1973), 591-640. | MR

[9] D. E. EDMUNDS J. R. L. WEBB: Quasilinear elliptic pгoblems in unbounded domains. Proc. Royal Soc. London A 334 (1973), 397-410. | MR

[10] D. GIACHETTI E. MASCOLO: Problemi quasi ellittici in spazi di Sobolev con peso. to appear in Rend. Acc. Naz. dei Lincei, Cl. Sc. Fis. Mat. Nat. vol. LXIII, 5 (1977). | MR

[11] P. HESS: Nonlinear elliptic problems in unbounded domains. conference held at Int. Summer School on nonlinear Operators Berlin (G. D. R.), Sept. 1975.

[12] P. HESS: Problèmes aux limites nonlinéaires dans des domaines non bornés. C.R. Ac. Sc. Paris, t. 281, Série A (Oct. 6, 1975). | MR

[13] J. NEČAS: Les équations elliptiques non linéaires. Czechoslovak Math. Journal 19 (94) (1968), 252-274. | MR

[14] R. SCHIANCHI: Spazi dissimetrici e con peso. Rend. Acc. Sc. Pis. Mat. Serie IV, vol. XLII (1975), 1-40.

[15] R. SCHIANCHI: Spazi dissimetrici e con peso e applicazioni ai problemi quasi ellittici non lineari. to appear in Le Matematiche (Catania).

[16] M. M. VAINBERG: Variational methods for the study of nonlinear operator. Holden-Day Inc. (1964). | MR