The Berry-Esseen theorem for rank statistics
Commentationes Mathematicae Universitatis Carolinae, Tome 20 (1979) no. 3, pp. 399-415 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 60F05, 62E20, 62G10
@article{CMUC_1979_20_3_a0,
     author = {Hu\v{s}kov\'a, Marie},
     title = {The {Berry-Esseen} theorem for rank statistics},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {399--415},
     year = {1979},
     volume = {20},
     number = {3},
     mrnumber = {550444},
     zbl = {0416.60023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1979_20_3_a0/}
}
TY  - JOUR
AU  - Hušková, Marie
TI  - The Berry-Esseen theorem for rank statistics
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1979
SP  - 399
EP  - 415
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1979_20_3_a0/
LA  - en
ID  - CMUC_1979_20_3_a0
ER  - 
%0 Journal Article
%A Hušková, Marie
%T The Berry-Esseen theorem for rank statistics
%J Commentationes Mathematicae Universitatis Carolinae
%D 1979
%P 399-415
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1979_20_3_a0/
%G en
%F CMUC_1979_20_3_a0
Hušková, Marie. The Berry-Esseen theorem for rank statistics. Commentationes Mathematicae Universitatis Carolinae, Tome 20 (1979) no. 3, pp. 399-415. http://geodesic.mathdoc.fr/item/CMUC_1979_20_3_a0/

[1] von BAHR B.: Remainder Term Estimate in a Combinatorial Limit Theorem. Z. Wahrscheinlichkeitstheorie verw. Gebiete 35, (1976), 131-139. | MR | Zbl

[2] BERGSTRÖM H., PURI M. L.: Convergence and Remainder Terms in Linear Rank Statistics. Ann. Statist. 5, (1977), 671-680. | MR

[3] CALLAERT H., JANSSEN P.: The Berry-Esseen Theorem for $U$-statistics. 6, (1978), 417-421. | MR | Zbl

[4] ERICKSON R. V., KOUL H.: Rates of Convergence for Linear Rank Statistics. Ann. Statist. 4, (1976), 771-774. | MR | Zbl

[5] HÁJEK J., ŠIDÁK Z.: Theory of Rank Tests. Academia, Prague, (1967). | MR

[6] HUŠOVÁ M.: The Rate of Convergence of Simple Linear Rank Statistics under Hypothesis and Alternatives. Ann. Statist. 4, (1977), 658-670. | MR

[7] JUREČKOVÁ J., PURI M. L.: Order of Normal Approximation for Rank Test Statistics Distribution. Am. Probability 3, (1975), 526-533. | MR

[8] DHARMADHIKARl S. W., FABIAN V., JODGEO K.: Bounds on the Moments of Martingales. Ann. Math. Statist., 39, (1968), 1719-1723. | MR

[9] WELLNER J.: Convergence of the sequential uniform empirical processes with bounds for centered beta rv's and a log-log law. Technical report no. 31, Univ. of Washington, (1974).