@article{CMUC_1979_20_2_a8,
author = {Rie\v{c}an, Beloslav},
title = {The measure extension theorem for subadditive probability measures in orthomodular $\sigma$-continuous lattices},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {309--316},
year = {1979},
volume = {20},
number = {2},
mrnumber = {539559},
zbl = {0413.28006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1979_20_2_a8/}
}
TY - JOUR AU - Riečan, Beloslav TI - The measure extension theorem for subadditive probability measures in orthomodular $\sigma$-continuous lattices JO - Commentationes Mathematicae Universitatis Carolinae PY - 1979 SP - 309 EP - 316 VL - 20 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_1979_20_2_a8/ LA - en ID - CMUC_1979_20_2_a8 ER -
%0 Journal Article %A Riečan, Beloslav %T The measure extension theorem for subadditive probability measures in orthomodular $\sigma$-continuous lattices %J Commentationes Mathematicae Universitatis Carolinae %D 1979 %P 309-316 %V 20 %N 2 %U http://geodesic.mathdoc.fr/item/CMUC_1979_20_2_a8/ %G en %F CMUC_1979_20_2_a8
Riečan, Beloslav. The measure extension theorem for subadditive probability measures in orthomodular $\sigma$-continuous lattices. Commentationes Mathematicae Universitatis Carolinae, Tome 20 (1979) no. 2, pp. 309-316. http://geodesic.mathdoc.fr/item/CMUC_1979_20_2_a8/
[1] GYORFFY L., RIEČAN B.: On the extension of measures in relatively complemented lattices. Mat. časop. 23 (1973), 158-163. | MR
[2] KAPPOS D. A.: Measure theory on orthocomplemented posets and lattices. In: Measure theory, Oberwolfach 1975, Proceedings, Springer, Berlin, Lecture notes in math., vol. 541, 323-343. | MR
[3] RIEČAN B.: On the extension of a measure on lattices. Mat. čas. 19 (1969), 44-49. | MR
[4] RIEČAN B.: A note on the extension of measures on lattices. Mat. časop. 20 (1970), 239-244. | MR
[5] VARADARAJAN V. S.: Geometry of quantum theory. Van Nostrand, New York, 1968. | MR
[6] VOLAUF P.: The measure extension problem on ortholattices. Acta math. Univ. Comen., to appear. | MR
[7] VOLAUF F.: Some problems of the probability theory in ordered spaces. PhD dissertation, Bratislava, 1977.