@article{CMUC_1979_20_1_a6,
author = {Fortunato, Donato},
title = {Remarks on the non self-adjoint {Schr\"odinger} operator},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {79--93},
year = {1979},
volume = {20},
number = {1},
mrnumber = {526148},
zbl = {0388.35018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1979_20_1_a6/}
}
Fortunato, Donato. Remarks on the non self-adjoint Schrödinger operator. Commentationes Mathematicae Universitatis Carolinae, Tome 20 (1979) no. 1, pp. 79-93. http://geodesic.mathdoc.fr/item/CMUC_1979_20_1_a6/
[1] V. BENCI D. FORTUNATO: Discreteness conditions of the spectrum of Schrödinger operators. J. Math. Anal. and Appl. 64 (1978), 695-700. | MR
[2] F. E. BROWDER: On the spectral theory of elliptic differential operators. Mat. Annalen 142 (1961), 22-130. | MR | Zbl
[3] I. M. GLAZMAN: Direct methods of the qualitative spectral analysis of singular differential operators. Israel Program of Translations, Jerusalem (1965). | MR
[4] T. KATO: Perturbation theory for linear operators. Springer Verlag, New York (1966). | MR | Zbl
[5] T. KATO: Schrödinger operators with singular potentials. Israel J. Math. 13 (1973), 135-148. | MR | Zbl
[6] V. B. LIDSKII: Conditions for the complete continuity of the resolvent of a nonself-adjoint differential operators. Dokl. Akad. Nauk SSSR 113 (1957), 28-31. | MR
[7] A. M. MOLCHANOV: The conditions for the discreteness of the spectrum of self-adjoint second-order differential equations. Trudy Moskov. Mat. Obšč. 2 (1953), 169-300. | MR
[8] M. A. NAIMARK: The spectrum of singular non self-adjoint second order differential operators. Dokl. Akad. Nauk SSSR (1952), 41-44. | MR
[9] B. S. PAVLOV: The non self-adjoint Schrödinger operator. Topics Math. Phys. 1 (1967), 83-113.
[10] M. REED B. SIMON: Methods of modern Mathematical Physics, I. Academic Press New York (1972). | MR
[11] M. SCHECHTER: Principles of functional analysis. Academic Press, New York (1971). | MR | Zbl
[12] T. KATO: On some Schrödinger operators with a singular complex potential. Ann. Sc. Norm. Sup. Pisa 5 (1978), 105-114. | MR | Zbl