@article{CMUC_1979_20_1_a0,
author = {Haslinger, Jaroslav},
title = {Finite element analysis of the {Signorini} problem},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {1--17},
year = {1979},
volume = {20},
number = {1},
mrnumber = {526143},
zbl = {0402.65061},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1979_20_1_a0/}
}
Haslinger, Jaroslav. Finite element analysis of the Signorini problem. Commentationes Mathematicae Universitatis Carolinae, Tome 20 (1979) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/CMUC_1979_20_1_a0/
[1] DUVAUT G., LIONS J. L.: Les inéquations en mécanique et en physique. Dunod, Paris 1972. | MR | Zbl
[2] HLAVÁČEK I., LOVÍŠEK J.: Finite-element analysis of the Signorini problem in semi-coercive cases. (to appear) .
[3] BREZZI F., HAGER W. W., RAVIART P. A.: Error estimates for the finite element solution of variational inequalities. Part I, Primal theory. Numer. Math. 28 (1977), 431-443. | MR | Zbl
[4] CÉA J.: Optimisation, Théorie et Algorithmes. Dunod, Paris, 1971. | MR
[5] HASLINGER J., HLAVÁČEK I.: Contact between elastic bodies, Part I. Continuous problems, Part II. Approximation. (to appear).
[6] NITZSCHE J. A.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36, 9-15. | MR
[7] FIX G., STRANG G.: An analysis of the finite element method. Prentice-Hall, Englewood Cliffs. | Zbl
[8] NEČAS J.: Les méthodes directes en théorie des équations elliptiques. Academics, Prague 1967. | MR
[9] NEČAS J.: On regularity of solutions to nonlinear variational inequalities for second-order elliptic systems. Rendiconti di Matematica (2), Vol. 8, Serie VI, 481-498. | MR
[10] HLAVÁČEK I., LOVÍŠEK J.: A finite element analysis for the Signorini problem in plane elastostatics. Apl. Mat. 22 (1977), 215-228. | MR