@article{CMUC_1978_19_4_a15,
author = {\v{S}vejdar, V{\'\i}t\v{e}zslav},
title = {Degrees of interpretability},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {789--813},
year = {1978},
volume = {19},
number = {4},
mrnumber = {518190},
zbl = {0407.03020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1978_19_4_a15/}
}
Švejdar, Vítězslav. Degrees of interpretability. Commentationes Mathematicae Universitatis Carolinae, Tome 19 (1978) no. 4, pp. 789-813. http://geodesic.mathdoc.fr/item/CMUC_1978_19_4_a15/
[F] S. FEFERMAN: Arithmetization of metamathematics in a general setting. Fund. Math. 49 (1960), 35-92. | MR | Zbl
[G] D. GUASPARI: Partially conservative extensions of arithmetic. to appear. | MR | Zbl
[H] P. HÁJEK: On interpretability in set theories II. Comment. Math. Univ. Carolinae 13 (1972), 445-455. | MR
[HH] M. HÁJKOVÁ P. HÁJEK: On interpretability in theories containing arithmetic. Fund. Math. 76 (1972), 131-137. | MR
[J] R. G. JEROSLOW: Consistency statements in formal theories. Fund. Math. 72 (1971), 17-40. | MR | Zbl
[M] J. MYCIELSKI: A lattice of interpretability types of theories. J. Symb. Logic 42 (1977), 297-305. | MR | Zbl
[VH1] P. VOPĚNKA P. HÁJEK: The theory of semisets. North Holland, Amsterdam, and Academia, Prague, 1972. | MR
[VH2] P. VOPĚNKA P. HÁJEK: Existence of a generalized semantic model of Gödel-Bernays set theory. Bull. Acad. Pol. Sci. 12 (1973), 1079-1086. | MR