Note on the differential equation $F(t, y(t), y(h(t)), y'(t)) = 0$
Commentationes Mathematicae Universitatis Carolinae, Tome 19 (1978) no. 4, pp. 627-637 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34A10, 34A12, 34K05
@article{CMUC_1978_19_4_a1,
     author = {Rzepecki, Bogdan},
     title = {Note on the differential equation $F(t, y(t), y(h(t)), y'(t)) = 0$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {627--637},
     year = {1978},
     volume = {19},
     number = {4},
     mrnumber = {518176},
     zbl = {0399.34058},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1978_19_4_a1/}
}
TY  - JOUR
AU  - Rzepecki, Bogdan
TI  - Note on the differential equation $F(t, y(t), y(h(t)), y'(t)) = 0$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1978
SP  - 627
EP  - 637
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1978_19_4_a1/
LA  - en
ID  - CMUC_1978_19_4_a1
ER  - 
%0 Journal Article
%A Rzepecki, Bogdan
%T Note on the differential equation $F(t, y(t), y(h(t)), y'(t)) = 0$
%J Commentationes Mathematicae Universitatis Carolinae
%D 1978
%P 627-637
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1978_19_4_a1/
%G en
%F CMUC_1978_19_4_a1
Rzepecki, Bogdan. Note on the differential equation $F(t, y(t), y(h(t)), y'(t)) = 0$. Commentationes Mathematicae Universitatis Carolinae, Tome 19 (1978) no. 4, pp. 627-637. http://geodesic.mathdoc.fr/item/CMUC_1978_19_4_a1/

[1] S. ABIAN A. B. BROW: On the solution of the differential equation $f(x,y,y') = 0$. Amer. Math. Monthly 66 (1959), 192-199. | MR

[2] A. BIELECKI: Une remarque sur la méthode de Banach-Cacciopoli-Tikhonov dans la théorie des équations différentielles ordinaires. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 4 (1956), 261-264. | MR

[3] L. COLLATZ: Funktionalanalys is und Numerische Mathematik. Berlin - Gdttingen - Heidelberg 1964.

[4] R. CONTI: Sulla resoluzione dell' equazione $F(t,x,x') = 0$. Ann. Mat. Pura Appl. 48 (1959), 97-107. | MR

[5] F. R. GANTMACHER: The theory of matrices. [in Russian], Moscow 1966.

[6] K. GOEBEL: A coincidence theorem. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 16 (1968), 733-735. | MR | Zbl

[7] M. A. KRASNOSELSKIĬ G. M. VAĬNIKKO P. P. ZABREĬKO J. A. B. RUTICKIĬ V. JA. STECENKO: Approximate solution of operator equations. [in Russian], Moscow 1969. | MR

[8J C. KURATOWSKI: Topologie. VI. Warszawa 1958.

[9J G. PULVIRENTI: Equazioni differenziali in forma implicite in uno spazi di Banach. Ann. Mat. Pura Appl. 56 (1961), 177-191. | MR

[10] B. RZEPECKI: On the Banach principle and its application to the theory of differential equation. Comment. Math. 19 (1977), 355-363. | MR

[11] B. RZEPECKI: A generalization of Banach's contraction theorem. to appear in Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 26. | Zbl