Compactness as ${\cal E}$-pseudocompactness
Commentationes Mathematicae Universitatis Carolinae, Tome 19 (1978) no. 2, pp. 309-314 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 54C99, 54D30
@article{CMUC_1978_19_2_a6,
     author = {Petz, D\'enes},
     title = {Compactness as ${\cal E}$-pseudocompactness},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {309--314},
     year = {1978},
     volume = {19},
     number = {2},
     mrnumber = {0482662},
     zbl = {0385.54015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1978_19_2_a6/}
}
TY  - JOUR
AU  - Petz, Dénes
TI  - Compactness as ${\cal E}$-pseudocompactness
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1978
SP  - 309
EP  - 314
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1978_19_2_a6/
LA  - en
ID  - CMUC_1978_19_2_a6
ER  - 
%0 Journal Article
%A Petz, Dénes
%T Compactness as ${\cal E}$-pseudocompactness
%J Commentationes Mathematicae Universitatis Carolinae
%D 1978
%P 309-314
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1978_19_2_a6/
%G en
%F CMUC_1978_19_2_a6
Petz, Dénes. Compactness as ${\cal E}$-pseudocompactness. Commentationes Mathematicae Universitatis Carolinae, Tome 19 (1978) no. 2, pp. 309-314. http://geodesic.mathdoc.fr/item/CMUC_1978_19_2_a6/

[1] R. ENGELKING: On functions defined on Cartesian products. Fund. Math. 59 (1966), 221-231. | MR | Zbl

[2] H. HERRLICH J. Van der SLOT: Properties which are closely related to compactness. Indag. Math. 29 (1967), 524-529. | MR

[3] S. S. HONG: On $k$-compactlike spaces and reflextive subcategories. Gen.Topology Appl. 3 (1973), 319-330. | MR

[4] M. HUŠEK: The class of $k$-compact spaces is simple. Math. Z. 110 (1969), 123-126. | MR

[5] S. MRÓWKA: Further results on $E$-compact spaces. Acta Math. 320 (1968), 161-185. | MR

[6] A. ŠOSTAK: O klassah $\cal E$-psevdokoapaktnosti. Učen. Zap. Latvian Gos. Univ. (Top. prost. i otob. v nih V. 2) 257 (1976), 100-120.

[7] R. G. WOODS: Topological extemion properties. Trans Amer. Math. Soc. 210 (1975), 365-385. | MR