Graphs with given subgraphs represent all categories. II
Commentationes Mathematicae Universitatis Carolinae, Tome 19 (1978) no. 2, pp. 249-264 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 05C25, 05C99, 18B15
@article{CMUC_1978_19_2_a2,
     author = {Koubek, V\'aclav},
     title = {Graphs with given subgraphs represent all categories. {II}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {249--264},
     year = {1978},
     volume = {19},
     number = {2},
     mrnumber = {0498229},
     zbl = {0375.18004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1978_19_2_a2/}
}
TY  - JOUR
AU  - Koubek, Václav
TI  - Graphs with given subgraphs represent all categories. II
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1978
SP  - 249
EP  - 264
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1978_19_2_a2/
LA  - en
ID  - CMUC_1978_19_2_a2
ER  - 
%0 Journal Article
%A Koubek, Václav
%T Graphs with given subgraphs represent all categories. II
%J Commentationes Mathematicae Universitatis Carolinae
%D 1978
%P 249-264
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1978_19_2_a2/
%G en
%F CMUC_1978_19_2_a2
Koubek, Václav. Graphs with given subgraphs represent all categories. II. Commentationes Mathematicae Universitatis Carolinae, Tome 19 (1978) no. 2, pp. 249-264. http://geodesic.mathdoc.fr/item/CMUC_1978_19_2_a2/

[1] L. BABAI J. NEŠETŘIL: On infinite rigid graphs I and II. to appear.

[2] R. FRUCHT: Herstellung von Graphen mit vorgegebener abstrakter Gruppe. Compositio Math. 6 (1938), 239-250. | MR | Zbl

[3] Z. HEDRLÍN E. MENDELSOHN: The category of graphs with given subgraph - with applications to topology and algebra. Canad. J. Math. 21 (1969), 1506-1517. | MR

[4] Z. HEDRLÍN A. PULTR: Relations (graphs) with given finitely generated semigroup. Mhf. für Math. 68 (1964), 213-217. | MR

[5] Z. HEDRLÍN A. PULTR: Symmetric relations (undirected graphs) with given semigroup. Mhf. für Math. 68 (1964), 318-322. | MR

[6] Z. HEDRLÍN A. PULTR: On full embeddings of categories of algebras. Illinois J. Math. 10 (1966), 392-406. | MR

[7] Z. HEDRLÍN: Extensions of structures and full embeddings of categories. in: Proc. Intern. Congr. of Mathematicians, Nice, September 1970 (Gauthier-Villars, Paris, 1971). | MR

[8] P. HELL J. NEŠETŘIL: Graphs and $k$-societies. Canad. Math. Bull. 13 (1970), 375-381. | MR

[9] P. HELL: Full embeddings into some categories of graphs. Alg. UNiv. 2 (1972), 129-141. | MR | Zbl

[10] V. KOUBEK: Graphs with given subgraphs represent all categories. Comment. Math. Univ. Carolinae 18 (1977), 115-127. | MR | Zbl

[11] V. KOUBEK: On categories into which each concrete category can be embedded. Cahiers Topo. et Géo. Diff. 17 (1976), 33-57. | MR | Zbl

[12] L. KUČERA: Úplná vnoření struktur. (Czech), Thesis, Prague 1973.

[13] E. MENDELSOHN: On a technique for representing semigroups and endomorphism semigroups of graphs with given properties. Semigroup Forum 4 (1972), 283-294. | MR

[14] A. PULTR: On full embeddings of concrete categories with respect to forgetful functor. Comment. Math. Univ. Carolinae 9 (1968), 281-305. | MR

[15] A. PULTR: Eine Bemerkung über volle Einbettungen von Kategorien von Algebren. Math. Annalen 178 (1968), 78-82. | MR | Zbl

[16] V. TRNKOVÁ: Categorial aspects are useful for topology. general Topology and its Relation to modern Analysis and Algebra IV, Lecture Notes in Math. 609 (1977), 211-225. | MR

[17] P. VOPĚNKA A. PULTR Z. HEDRLÍN: A rigid relation exists on any set. Comment. Math. Univ. Carolinae 6 (1965), 149-155. | MR