@article{CMUC_1978_19_2_a2,
author = {Koubek, V\'aclav},
title = {Graphs with given subgraphs represent all categories. {II}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {249--264},
year = {1978},
volume = {19},
number = {2},
mrnumber = {0498229},
zbl = {0375.18004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1978_19_2_a2/}
}
Koubek, Václav. Graphs with given subgraphs represent all categories. II. Commentationes Mathematicae Universitatis Carolinae, Tome 19 (1978) no. 2, pp. 249-264. http://geodesic.mathdoc.fr/item/CMUC_1978_19_2_a2/
[1] L. BABAI J. NEŠETŘIL: On infinite rigid graphs I and II. to appear.
[2] R. FRUCHT: Herstellung von Graphen mit vorgegebener abstrakter Gruppe. Compositio Math. 6 (1938), 239-250. | MR | Zbl
[3] Z. HEDRLÍN E. MENDELSOHN: The category of graphs with given subgraph - with applications to topology and algebra. Canad. J. Math. 21 (1969), 1506-1517. | MR
[4] Z. HEDRLÍN A. PULTR: Relations (graphs) with given finitely generated semigroup. Mhf. für Math. 68 (1964), 213-217. | MR
[5] Z. HEDRLÍN A. PULTR: Symmetric relations (undirected graphs) with given semigroup. Mhf. für Math. 68 (1964), 318-322. | MR
[6] Z. HEDRLÍN A. PULTR: On full embeddings of categories of algebras. Illinois J. Math. 10 (1966), 392-406. | MR
[7] Z. HEDRLÍN: Extensions of structures and full embeddings of categories. in: Proc. Intern. Congr. of Mathematicians, Nice, September 1970 (Gauthier-Villars, Paris, 1971). | MR
[8] P. HELL J. NEŠETŘIL: Graphs and $k$-societies. Canad. Math. Bull. 13 (1970), 375-381. | MR
[9] P. HELL: Full embeddings into some categories of graphs. Alg. UNiv. 2 (1972), 129-141. | MR | Zbl
[10] V. KOUBEK: Graphs with given subgraphs represent all categories. Comment. Math. Univ. Carolinae 18 (1977), 115-127. | MR | Zbl
[11] V. KOUBEK: On categories into which each concrete category can be embedded. Cahiers Topo. et Géo. Diff. 17 (1976), 33-57. | MR | Zbl
[12] L. KUČERA: Úplná vnoření struktur. (Czech), Thesis, Prague 1973.
[13] E. MENDELSOHN: On a technique for representing semigroups and endomorphism semigroups of graphs with given properties. Semigroup Forum 4 (1972), 283-294. | MR
[14] A. PULTR: On full embeddings of concrete categories with respect to forgetful functor. Comment. Math. Univ. Carolinae 9 (1968), 281-305. | MR
[15] A. PULTR: Eine Bemerkung über volle Einbettungen von Kategorien von Algebren. Math. Annalen 178 (1968), 78-82. | MR | Zbl
[16] V. TRNKOVÁ: Categorial aspects are useful for topology. general Topology and its Relation to modern Analysis and Algebra IV, Lecture Notes in Math. 609 (1977), 211-225. | MR
[17] P. VOPĚNKA A. PULTR Z. HEDRLÍN: A rigid relation exists on any set. Comment. Math. Univ. Carolinae 6 (1965), 149-155. | MR