Convex combinations of commuting affine operators
Commentationes Mathematicae Universitatis Carolinae, Tome 19 (1978) no. 1, pp. 45-51
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1978_19_1_a4,
author = {Sato, Ryotaro},
title = {Convex combinations of commuting affine operators},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {45--51},
year = {1978},
volume = {19},
number = {1},
mrnumber = {0482295},
zbl = {0374.47003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1978_19_1_a4/}
}
Sato, Ryotaro. Convex combinations of commuting affine operators. Commentationes Mathematicae Universitatis Carolinae, Tome 19 (1978) no. 1, pp. 45-51. http://geodesic.mathdoc.fr/item/CMUC_1978_19_1_a4/
[1] N. DUNFORD J. T. SCHWARTZ: Linear Operators. Part 1, Interscience, New York, 1958.
[2] M. FALKOWITZ: On finite invariant measures for Markov operators. Proc. Amer. Math. Soc. 38 (1973), 553-557. | MR
[3] W. RUDIN: Functional Analysis. McGraw-Hill, New York, 1973. | MR | Zbl
[4] R. SATO: On abstract mean ergodic theorems. to appear in Tôhoku Math. J. | MR | Zbl
[5] H .H. SCHAEFER: Topological Vector Spaces. Springer, New York, 1971. | MR | Zbl
[6] R. SINE: Convex combinations of uniformly mean stable Markov operators. Proc. Amer. Math. Soc. 51 (1975), 123-126. | MR | Zbl