Convex combinations of commuting affine operators
Commentationes Mathematicae Universitatis Carolinae, Tome 19 (1978) no. 1, pp. 45-51 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 46A03, 47A35
@article{CMUC_1978_19_1_a4,
     author = {Sato, Ryotaro},
     title = {Convex combinations of commuting affine operators},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {45--51},
     year = {1978},
     volume = {19},
     number = {1},
     mrnumber = {0482295},
     zbl = {0374.47003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1978_19_1_a4/}
}
TY  - JOUR
AU  - Sato, Ryotaro
TI  - Convex combinations of commuting affine operators
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1978
SP  - 45
EP  - 51
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1978_19_1_a4/
LA  - en
ID  - CMUC_1978_19_1_a4
ER  - 
%0 Journal Article
%A Sato, Ryotaro
%T Convex combinations of commuting affine operators
%J Commentationes Mathematicae Universitatis Carolinae
%D 1978
%P 45-51
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1978_19_1_a4/
%G en
%F CMUC_1978_19_1_a4
Sato, Ryotaro. Convex combinations of commuting affine operators. Commentationes Mathematicae Universitatis Carolinae, Tome 19 (1978) no. 1, pp. 45-51. http://geodesic.mathdoc.fr/item/CMUC_1978_19_1_a4/

[1] N. DUNFORD J. T. SCHWARTZ: Linear Operators. Part 1, Interscience, New York, 1958.

[2] M. FALKOWITZ: On finite invariant measures for Markov operators. Proc. Amer. Math. Soc. 38 (1973), 553-557. | MR

[3] W. RUDIN: Functional Analysis. McGraw-Hill, New York, 1973. | MR | Zbl

[4] R. SATO: On abstract mean ergodic theorems. to appear in Tôhoku Math. J. | MR | Zbl

[5] H .H. SCHAEFER: Topological Vector Spaces. Springer, New York, 1971. | MR | Zbl

[6] R. SINE: Convex combinations of uniformly mean stable Markov operators. Proc. Amer. Math. Soc. 51 (1975), 123-126. | MR | Zbl