On the order of convergence of Broyden-Gay-Schnabel's method
Commentationes Mathematicae Universitatis Carolinae, Tome 19 (1978) no. 1, pp. 107-118 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 65H10
@article{CMUC_1978_19_1_a10,
     author = {Mart{\'\i}nez, J. M.},
     title = {On the order of convergence of {Broyden-Gay-Schnabel's} method},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {107--118},
     year = {1978},
     volume = {19},
     number = {1},
     mrnumber = {0501861},
     zbl = {0383.65029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1978_19_1_a10/}
}
TY  - JOUR
AU  - Martínez, J. M.
TI  - On the order of convergence of Broyden-Gay-Schnabel's method
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1978
SP  - 107
EP  - 118
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1978_19_1_a10/
LA  - en
ID  - CMUC_1978_19_1_a10
ER  - 
%0 Journal Article
%A Martínez, J. M.
%T On the order of convergence of Broyden-Gay-Schnabel's method
%J Commentationes Mathematicae Universitatis Carolinae
%D 1978
%P 107-118
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1978_19_1_a10/
%G en
%F CMUC_1978_19_1_a10
Martínez, J. M. On the order of convergence of Broyden-Gay-Schnabel's method. Commentationes Mathematicae Universitatis Carolinae, Tome 19 (1978) no. 1, pp. 107-118. http://geodesic.mathdoc.fr/item/CMUC_1978_19_1_a10/

[1] J. G. P. BARNES: An algorithm for solving nonlinear equations based on the secant method. Computer Journal, 8, 1965, 66-72. | MR

[2] C. G. BROYDEN: A class of methods for solving nonlinear simultaneous equations. Mathematics of Computation, 19, 1965, 577-593. | MR | Zbl

[3] J. E. DENNIS J. J. MORE: A characterization of superlinear convergence and its application to quasi-Newton methods. Mathematics of Computation, 28, 1974, 549-560. | MR

[4] D. M. GAY: Some convergence properties of Broyden's method. Working Paper No 175, National Bureau of Economic Research, USA, 1977.

[5] D. M. GAY R. B. SCHNABEL: Solving systems of non-linear equations by Broyden's method with projected updates. Working Paper No 169, National Bureau of Economic Research, USA, 1977.

[6] W. B. GRAGG G. W. STEWART: A stable variant of the secant method for solving nonlinear equations. SIAM J. of Numerical Analysis, 13, 1976, 127-140. | MR

[7] J. J. MORE J. TRAGENSTEIN: On the global convergence of Broyden's method. Mathematics of Computation, 30, 1976, 523-540. | MR

[8] J. M. ORTEGA W. C. RHEINBOLDT: Iterative solution of nonlinear equations in several variables. Academic Press, New York, 1970. | MR

[9] M. J. D. POWELL: A hybrid method for nonlinear equations. en Rabinovitz P. (editor), Numerical methods for nonlinear algebraic equations, Gordon and Breach, London, 1970. | MR | Zbl

[10] P. WOLFE: The secant method for solving nonlinear equations. Communications ACM, 12, 1959, 12-13.