$L_f (a,r)$-spaces between which all the operators are compact. II
Commentationes Mathematicae Universitatis Carolinae, Tome 19 (1978) no. 1, pp. 1-12 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 46A45, 47B05, 47B06
@article{CMUC_1978_19_1_a0,
     author = {De Grande-De Kimpe, Nicole},
     title = {$L_f (a,r)$-spaces between which all the operators are compact. {II}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {1--12},
     year = {1978},
     volume = {19},
     number = {1},
     mrnumber = {492363},
     zbl = {0376.46006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1978_19_1_a0/}
}
TY  - JOUR
AU  - De Grande-De Kimpe, Nicole
TI  - $L_f (a,r)$-spaces between which all the operators are compact. II
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1978
SP  - 1
EP  - 12
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1978_19_1_a0/
LA  - en
ID  - CMUC_1978_19_1_a0
ER  - 
%0 Journal Article
%A De Grande-De Kimpe, Nicole
%T $L_f (a,r)$-spaces between which all the operators are compact. II
%J Commentationes Mathematicae Universitatis Carolinae
%D 1978
%P 1-12
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1978_19_1_a0/
%G en
%F CMUC_1978_19_1_a0
De Grande-De Kimpe, Nicole. $L_f (a,r)$-spaces between which all the operators are compact. II. Commentationes Mathematicae Universitatis Carolinae, Tome 19 (1978) no. 1, pp. 1-12. http://geodesic.mathdoc.fr/item/CMUC_1978_19_1_a0/

[1] DE GRANDE-DE KIMPE N.: $L_f(a,r)$-spaces between which all the operators are compact, I. Comment. Mat. Univ. Carolinae 18 (1977), 659-674. | MR | Zbl

[2] DUBINSKI Ed.: Infinite type power series subspaces of finite type power series subspaces. Israel J. Math. 15 (3) (1973), 257-281. | MR

[3] DUBINSKI Ed.: Infinite type power series subspaces of infinite type power series spaces. Israel J. Math. 20 (3-4) (1975), 359-368. | MR

[4] KOTHE G.: Nukleare $(F)$- und $(DF)$ -Folgenräume. Theory of sets and topology (1972), 327-332. | MR