$L_f (a,r)$-spaces between which all the operators are compact. II
Commentationes Mathematicae Universitatis Carolinae, Tome 19 (1978) no. 1, pp. 1-12
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1978_19_1_a0,
author = {De Grande-De Kimpe, Nicole},
title = {$L_f (a,r)$-spaces between which all the operators are compact. {II}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {1--12},
year = {1978},
volume = {19},
number = {1},
mrnumber = {492363},
zbl = {0376.46006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1978_19_1_a0/}
}
TY - JOUR AU - De Grande-De Kimpe, Nicole TI - $L_f (a,r)$-spaces between which all the operators are compact. II JO - Commentationes Mathematicae Universitatis Carolinae PY - 1978 SP - 1 EP - 12 VL - 19 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMUC_1978_19_1_a0/ LA - en ID - CMUC_1978_19_1_a0 ER -
De Grande-De Kimpe, Nicole. $L_f (a,r)$-spaces between which all the operators are compact. II. Commentationes Mathematicae Universitatis Carolinae, Tome 19 (1978) no. 1, pp. 1-12. http://geodesic.mathdoc.fr/item/CMUC_1978_19_1_a0/
[1] DE GRANDE-DE KIMPE N.: $L_f(a,r)$-spaces between which all the operators are compact, I. Comment. Mat. Univ. Carolinae 18 (1977), 659-674. | MR | Zbl
[2] DUBINSKI Ed.: Infinite type power series subspaces of finite type power series subspaces. Israel J. Math. 15 (3) (1973), 257-281. | MR
[3] DUBINSKI Ed.: Infinite type power series subspaces of infinite type power series spaces. Israel J. Math. 20 (3-4) (1975), 359-368. | MR
[4] KOTHE G.: Nukleare $(F)$- und $(DF)$ -Folgenräume. Theory of sets and topology (1972), 327-332. | MR